PHYTOCHEMICAL STUDY, VITAMINS CONTENT AND FREE RADICAL SCAVENGING ACTIVITY OF BIXA ORELLANA L. LEAVES FROM BENIN

F. T. D. BOTHON1*, J. ADOVELANDE2, C. P. AGBANGNAN DOSSA 1, F. AVLESSI1, D. V. WOTTO3, D. C. K. SOHOUNHOUE1

1Laboratoire d'Etude et de Recherche en Chimie appliquée, Ecole Polytechnique d'Abomey Calavi, Université d'Abomey-Calavi, 01 BP 2009 Cotonou, Bénin
2 Laboratoire de Biochimie et de Biologie cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin
3 Laboratoire de Chimie Physique, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Bénin.

Abstract:
This paper reports metabolites content, minerals, vitamins content and radical-scavenging potential of Bixa orellana L. leaves. The phytochemical screening based on the protocols available in the literature, showed the presence of bioactive metabolites such as: polyphenols, alkaloids, saponins, tannins, steroids, anthraquinones, sterols, terpenes and reducing sugars. Flame atomic absorption spectroscopy analysis revealed that the leaves are rich in: calcium (1.56%), potassium (1.54%), magnesium (0.501%) and phosphorus (0.37%). Kjedah method showed the richness of the leaves in total protein content (23.70 %). In contrast to their protein content, vitamins A and C content of Bixa orellana leaves is very low: 0.23 µg/g of vitamin A and 6.80 µg/g of vitamin C. Its ethanolic extract has the same IC50 as ascorbic acid for free radical scavenging activity by DPPH method. From these results, it appears that Bixa orellana leaves, in defiance of their medicinal use, can also be used in human nutrition as a source of protein and some minerals.

Keywords: Bixa orellana, DPPH, metabolites, minerals, vitamins.

*Corresponding author:
F. T. D. BOTHON,
Laboratoire d'Etude et de Recherche en Chimie appliquée,
Ecole Polytechnique d’Abomey Calavi,
Université d’Abomey-Calavi, 01 BP 2009 Cotonou, Bénin
botheo200108@gmail.com

Please cite this article in press F. T. D. BOTHON et al., Phytochemical Study, Vitamins Content and Free Radical Scavenging Activity of Bixa Orellana L. Leaves From Benin., Indo Am. J. P. Sci., 2018; 05(09).
INTRODUCTION:
Bixa orellana (Bixaceae) is a plant native to Brazil but grows in other regions such as South America (Ecuador, Mexico, Peru), Asia (India, Indonesia) and Africa (Benin, Ghana, Kenya and Nigeria) [1]. This plant is known for its antimycobacterial, antibacterial, antioxidant, antihistamine, neuropharmacological, anticonvulsant, analgesic antidiabetic and anticarcinogenic effects [2-9]. It is a domesticated plant which is found everywhere in Benin [10]. Among the different parts of the plant, seeds are especially the most used; its pigment serves to color the fresh cheese and sauce; and is also used in cosmetics [11]. In Collines region, central of Benin 15 percent of households use Bixa orellana (Annatto) fruit as condiment, replacing tomatoes in sauce [12]. The seeds of this plant are a source of natural dye, rich on the carotenoids bixin (dark red color) and norbixin or orelline (yellow color) which are mainly used to develop attractive colors in dairy products (cheeses, margarine, and butter) [13]. The importance of the seeds makes that leaves are under exploited in Benin whereas they are used in by a fringe of the population against vomiting, expectorant, diabetes, ulcer [14]. The aim of this work was to explore other possibilities of using annatto leaves, through the determination of their phytochemical composition and their antioxidant activity.

MATERIALS AND METHODS:
Plant material
Bixa orellana leaves were collected from Valley farm located in the village of Loboga, Bopa, department of Mono in South Western of Benin in September 2017.

Preparation of plant extracts
The collected leave samples were dried at room temperature for 7-10 days and crushed to powder form. Hydro-ethanolic extract were obtained after soaked 10g of powdered leaves sample with 100ml of hydro-ethanolic (50/50) solution and stirred for 24 hours. The extract was filtered, dried and stored until further used.

Phytochemical screening
hydro-ethanolic extract of the leaves were submitted to qualitative phytochemical analysis using the methods variously described by Bothon (2014) [15] and Aswathi (2017) [16], to detect bioactive metabolites. The quantitative analysis of phenolic compounds was carried out by spectrophotometry.

Test for alkaloids
Alkaloids where reveled by Mayer’s test: A fraction of extract was treated with Mayer’s test reagent (2.7 g of mercuric chloride and 10 g of potassium iodide in 20 ml of water) and observed for the formation of white or yellow-white precipitate in the presence of alkaloid.

Test for flavonoids
add a few drops of a 1/10 soda solution to a few ml of the extract solution. The yellow-orange color characterizes the presence of flavonoids.

Test for anthocyanins
2 mL of aqueous extract is added to 2 mL of 2N HCl. The appearance of pink-red turn’s Blue-violet by the addition of ammonia indicates the presence of anthocyanins.

Test for leucoanthocyanins
5 mL of extract added to 5 mL of isoamyl alcohol. Upper layer appears red color indicates for presence of leucoanthocyanins.

Test for anthraquinones
To the chloroform extract, 10% (v/v) of aqueous KOH is added. After stirring, the presence of anthraquinones is confirmed by a shift from the aqueous phase to the red.

Test for reducing sugars
To 5 ml of the decoction add 1 ml of FeHling reagent (copper sulphate and double tartate of sodium and potassium v / v and heat it all in the bath for 15 minutes.). Obtaining a red brick precipitate indicates the presence of reducing compounds.

Test for tannins
Aqueous extract (5 ml) was mixed with 1ml of dilute aqueous 1% of ferric chloride solution. A dark green or blue green coloration was regarded as positive for the presence of tannins.

Test for saponins
Were determined by Frothing test / Foam test: 0.5mL of filtrate with 5mL of distilled water and shake well. (Persistence of frothing indicates the presence of saponins).

Test for coumarins
The detection of coumarins was carried out by extracting 0.5 g of sample in 10 mL of ether. The suspension was filtrated, evaporated and 2 mL of distilled water were added. The observation of fluorescence was performed by UV light at 365 nm.

Test for terpenoids
Liebermann-Burchard test: Extract (1ml) was treated with chloroform, acetic anhydride and drops of
H₂SO₄ was added and observed for the formation of dark green colour.

Test for cyanogenic derivatives

To 1 g of powder, add 5 ml of a mixture of equal volume of water and toluene. Shake well and clean the upper part of the tube, a microporous paper is fixed with a cap at the top of the tube (without soaking in the solution). The red color more or less fast paper indicates the presence of cyanogenic glycosides.

Test for mucilage

Were determined by observing the viscosity after addition of absolute ethanol.

Total phenolic content

Total phenolic contents were determined using Folin-Denis’ reagent [17]. Gallic acid was used as a reference and for the calibration curve; results were expressed as mg Gallic Acid Equivalents per g of Dry Weight (mg GAE / DW).

Tannins content

Tannin content was determined according to Agbangnan (2013) [18]. The tannins content was calculated from Catechin standard curves and expressed as mg Catechin equivalents per g of Dry Weight (mg CE/g DW).

Flavonoid content

Total flavonoid content: The total flavonoid content was determined according to Enujiugha (2012) [19] using AlCl₃. The flavonoid content was calculated from a quercetin standard curve and expressed as mg Quercetin Equivalents (mg QE/g DW).

Physicochemical analysis

Dry matter and ash content

Using the powdered leaves, the dry matter content was determined according to the method AOAC and Ash content was obtained after calcination in the oven at 290 to 600°C following according to AOAC method [20].

Vitamin A and C content

Vitamin C contained in analyzed samples was determined by titration with thiosulfate and diiodine in the presence of starch [21].

Proteins content

The crude protein content was determined from nitrogen content, which was determined using Kjedahl method [22].

Minerals content

Bixa orellana leaves were reduced to ashes after cremation; ashes were digested for 30 min in a mixture of nitric acid 1M and hydrochloric acid 3N. The filtrates were used to determine minerals content, according to the standards: NF EN 14082 [23] and ISO 15587-2 [24] methods, using flame atomic absorption spectroscopy (VARIANT with spectra A110 software).

Free radical scavenging assay

Free radical scavenging activity of the hydro-alcoholic extract was evaluating using 2, 2-diphenyl-1-picrylhydrazil (DPPH), as described by Bothon et al. [15] with slight modifications. 200 µl of the different concentrations (1-100 µg/ml) of the extract was added to 2.8 mL of DPPH solution at 120 µM. Ascorbic acid was used as positive control. Absorbance at 517 nm was determined after 1 hour, and IC₅₀ (Inhibitory concentration 50%) was determined. IC₅₀ value denotes the concentration of sample required to scavenge 50% of the DPPH free radicals. The percent inhibition was calculated from the following equation:

\[
\% \text{Inhibition} = \frac{\text{Abs. of control} - \text{Abs. of sample}}{\text{Abs. of control}} \times 100
\]

RESULTS AND DISCUSSION:

The phytochemical screening of Bixa orellana hydro-alcoholic extract revealed presence of polyphenols (tannins, flavonoids), alkaloid, anthraquinones, reducing sugars, saponins, sterols and terpenoids; whereas anthocyanins, leuco-anthocyanins, mucilage, coumarins and cyanogenic derivatives were absent (Table 1). This result is consistent with that of Gupta (2016) [25]. The quantification of total polyphenol, flavonoids, and tannins contents allowed having the results recorded in table 2. Consumption of polyphenols has been linked to lowered risks of many chronic diseases including cancer, cardiovascular diseases, chronic inflammation and many degeneration diseases [26]. Flavonoids are known for their antioxidant, anticancer and antihyperglycemic property [27, 28]. Apigenin, Luteolin, Ellagic acid were flavonoids identified in the leaves [29]. Terpenes are a big family of compounds a range of pharmacological properties: anticancer, antimicrobial, antifungal, antiviral, antihyperglycemic, analgesic, anti-inflammatory and antiparasitic [30]. Terpenes like: Cis-Ocimene, α-Elemene, α-Copaene and α- Carophyllene was found in the leaves [31, 32]. But no studies have yet been carried out on the chemical structure of the compounds belonging to the families of alkaloids, tannins and saponins in the leaves of Bixa orellana.
Table 1: Secondary metabolites of Bixa orellana Leaves

<table>
<thead>
<tr>
<th>Secondary metabolites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic compound</td>
</tr>
<tr>
<td>Alkaloid</td>
</tr>
<tr>
<td>Flavonoid</td>
</tr>
<tr>
<td>Anthocyanins</td>
</tr>
<tr>
<td>Leuco-anthocyanins</td>
</tr>
<tr>
<td>Anthraquinones</td>
</tr>
<tr>
<td>Reducing sugars</td>
</tr>
<tr>
<td>Tannins</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sterols and terpenes</td>
</tr>
<tr>
<td>Mucilage</td>
</tr>
<tr>
<td>Coumarins</td>
</tr>
<tr>
<td>Cyanogenic derivatives</td>
</tr>
<tr>
<td>Saponins</td>
</tr>
</tbody>
</table>

(+) indicates present.

Table 2: Polyphenol content of Bixa orellana leaves

<table>
<thead>
<tr>
<th>Polyphenol</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total polyphenols</td>
<td>3.081 mg GAE/g DW</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>23.35 mg QE/g DW</td>
</tr>
<tr>
<td>Tannins</td>
<td>1.84 mg CE/g DW</td>
</tr>
</tbody>
</table>

Minerals, proteins and vitamins are essential nutrients that human body needs in small amounts to work properly. The nutriment content of B. orellana leaves is presented in Table 3. It can be seen that the leaves flour is a good source of protein, calcium, magnesium, phosphorus and potassium. Calcium is known to be an important key regulator of a variety of cellular functions [5]. Calcium and phosphorus present in the largest quantity in the structure of the body and in the bones [33]. A diet rich in potassium reduces the risk of hypertension [34], while magnesium is essential for normal neuromuscular function as well as calcium and potassium transport and reduction of blood pressure [35].

Table 3: Nutrients content of Bixa orellana leaves

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash content (%)</td>
<td>8.75</td>
</tr>
<tr>
<td>Vitamin A (mg/kg)</td>
<td>0.23</td>
</tr>
<tr>
<td>Vitamin C (mg/kg)</td>
<td>6.80</td>
</tr>
<tr>
<td>Proteins content (%)</td>
<td>23.70</td>
</tr>
<tr>
<td>Calcium (mg/kg)</td>
<td>0.37</td>
</tr>
<tr>
<td>Copper (mg/kg)</td>
<td>9.48</td>
</tr>
<tr>
<td>Iron (mg/kg)</td>
<td>212.14</td>
</tr>
<tr>
<td>Magnesium (mg/kg)</td>
<td>0.501</td>
</tr>
<tr>
<td>Manganese (mg/kg)</td>
<td>450.57</td>
</tr>
<tr>
<td>Phosphorus (%)</td>
<td>0.367</td>
</tr>
<tr>
<td>Potassium (%)</td>
<td>1.536</td>
</tr>
<tr>
<td>Sodium (mg/kg)</td>
<td>285.53</td>
</tr>
<tr>
<td>Zinc (mg/kg)</td>
<td>22.431</td>
</tr>
</tbody>
</table>
The crude protein was 23.7%, a value superior to the protein content of seeds in general (13 to 17%) [36]. It is close to much other vegetable leaf consumed in Benin and in other Africa countries: *Solanum macrocarpum* (4.3%) [37], *Ocimum gratissimum* (1.21- 3.3%) [38, 39] from Nigeria, *Amaranthus cruentus* from Malawi (18.30%) [40]; but similar to Nigeria *Amaranthus cruentus* (23g/100g) [41]. The present study also showed that the leaves richer in calcium (1.557%), potassium (1.54%), magnesium (0.501 %), phosphorus (0.367 %). Those elements play essential roles in maintaining human health. Compared to the work of Dougnon and al., (2012) [42] one *Solanum macrocarp* leaves from Benin; *B. orellana* leaves are good sources of calcium and potassium. Calcium and phosphorus are the minerals present in the largest quantity in the structure of the body and in the bones [43]. Potassium is crucial to heart and smooth muscle contraction [44], a diet rich in potassium reduces the risk of hypertension. Increased dietary magnesium intake confers protection against the incidence of diabetes, metabolic syndrome, hypertension, and cardiovascular disease [45]. Minerals values contents obtained in the current study are very low; geographical origin of plants, belonging to the same species can result different concentration of elements depending of soil features and environmental pollution [46]. Cadmium and copper were present in studied leaves but with a lower level than recommended by World Health Organization in raw plant materials: 0.3 mg/kg of cadmium and 20 mg/kg of copper [47].

Regarding its antiradical activity, the hydroalcoholic extract of *B. orellana* has the same Inhibitory Concentration (IC50) as the standard ascorbic acid (5µg/ml) (Figures 1 and 2).

![Figure 1: DPPH scavenging by Acid ascorbic](image1.jpg)

![Figure 2: DPPH radical scavenging by B. orellana leaf extract](image2.jpg)

Prevention of the initiation step of oxydation chain by scavenging various reactive species such as free radicals is considered to be an important antioxidant mode of action [48]. Several studies have been interested in the radical scavenging capacity of *B. orellana* seed [48-50] and find it highest activity. But few studies examined the same activity for the leaves: Shilpi [51] work revealed that methanol extract of the leaves had radical scavenging properties in the DPPH assay with IC50 = 22.36 µg/ml; when ascorbic acid, used as the positive control had an IC50 value of 4.33 µg/ml. Enciso [52] showed that the hydro-alcoholic extract from leaves of *B. orellana* contain a high concentration of flavonoids which reflected the high correlation with the antioxidant capacity tested. This correlate with present work result with flavonoids content of 23.35 mg QE/g DW and ascorbic acid content of 6.80 mg/kg. The DPPH scavenging data suggest that hydroalcoholic extract from leaves of *B. orellana* is capable to preventing the initiation and propagation of free-radical-mediated chain reactions [50].

For this fact, the hydroethanolic extract of *B. orellana* leaves can play important role in the treatment of several diseases caused by oxidative stress.

CONCLUSION:

This study suggested that *Bixa orellana* leaves from Lobogo (Benin) are good sources of proteins,
calcium, magnesium phosphorus, potassium and vitamin C. It could be a potential source of natural antioxidant that could replace the use of toxic synthetic antioxidants. They should therefore be planted more in developing countries for not only their already known medical properties but also for their use as vegetables.

REFERENCES:
35. Rude RK. Physiology of magnesium metabolism and important role of magnesium in potassium deficiency The American journal of cardiology 1989; 63 (18): 31G-34G.
52. Gutiérrez JE ; Pérez JA; Poma EG ; Yoshizawa FA; Arévalo OR ; Peña DA ; Benavides NE; Valdivia E; Bayona RR ; Landa KN. Antioxidant activity of hydroalcoholic extract of medicinal plants and stimulation of fibroblast proliferation. Rev Soc quin peru 2010, 76(1): 73-79.