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Abstract:  
Magnetic nano particles are of great interest for researchers from a wide range of disciplines, including magnetic 

fluids in biotechnology/biomedicine, magnetic resonance imaging and environmental remediation. While a number 

of suitable methods have been developed for the synthesis of magnetic nano particles of various different 

compositions, successful application of such magnetic nano particles in the areas listed above is highly dependent 

on the stability of the particles under a range of different conditions. In the present review, first we have briefly 

discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have 

discussed the potential applications of MNPs in different with representative examples. At the end, we gave an 

overview on the current challenges and future prospects of MNPs. We focus mainly on recent developments in the 
synthesis of magnetic nanoparticles, and various strategies for the protection of the particles against oxidation and 

acid erosion. Further functionalization and application of such magnetic nanoparticles in catalysis and bio 

separation will be discussed in brief. This comprehensive review not only provides the mechanistic insight into the 

synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects. 
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INTRODUCTION: 

Magnetic nanoparticles (MNPs) are among the one 

form of NPs that shows certain reactions when the 

magnetic field is applied with little molecule size, 

huge explicit surface region, magnetic response, and 
superparamagnetism.1 In such a manner, MNPs have 

different novel attractive properties like 

superparamagnetic, low Curie temperature, and huge 

magnetic susceptibility. MNPs might be amassed and 

situated beneath a steady magnetic field, and the 

warmth is spent by the electromagnetic wave in the 

alternating magnetic field. 2 The advancement of 

magnetic nanoparticles (MNPs) is promising for 

various applications. Magnetic nanoparticles find a 

unique place in the field of nanotechnology-based 

materials along with the effect in a study of, bio-

sensing, nanomedicine, and analytical science. The 
above-mentioned utilization of magnetic 

nanoparticles and microparticles has helped a long 

way in discovering and treating microbial infections 

in the accompanying years. 3 

i). Drug delivery system conjugated with magnetic 

nanocarriers as like instance drug transporters. 

(ii) Magnetic nanoparticles controlled by using the 

radio frequency waves gave another way to deal with 

disease treatment applications4  

(iii) Magnetic detachment of natural entities added to 

the improvement of diagnostics for instance magneto 
acoustic tomography (MAT), computed tomography 

(CT), near-infrared (NIR) imaging, and magnetic 

resonance imaging (MRI).  

 

The medications got from a common plant source 

called herbal medications are generally utilized as a 

medication due to their less toxicity. 5-6 In late many 

years the utilization of herbal medications has 

essentially expanded which is clear from the 

expanded worldwide market of natural medicines. A 

magnetic nanoparticle (MNPs) for herbal medicines 

incorporates focused on drug delivery, which lessens 
measurement recurrence, builds the solvency and 

absorption though diminishes disposal. Nanoparticles 

can be utilized to focus on the herbal medicines to 

singular organs which improve the focus on targeted 

drug delivery, adequacy, and wellbeing of the 

medication, diminish the rehashed administration to 

beat resistance, yet in addition, help to build the 

therapeutic worth by decreasing toxicity and 

expanding the bioavailability.  

 

Advantages of Magnetic Nanoparticles: 
MNPs, usually magnetite nanoparticles possess much 

more effective function like a transporter for a wide 

range of hydrophobic and hydrophilic 

pharmacological compounds and show the 

supplementing properties 

 (1) Biological compatibility 

 (2) Elevated chemical strength  

(3) Held superparamagnetic properties 

 (4) Increased colloidal stability  

(5) Reduces the drug wastage  
(6) Decrease unfavourable responses of drug moieties  

(7) Supported conveyance of moieties towards the 

chosen designated organ and 

 (8) Less expenditure in the production of MNPs 

identifies them as a most productive delivery system 

than different novel formulations.  

 

Preparation of Magnetic Nanoparticles 
MNPs are normally present in the superparamagnetic 

state and the widely utilized nanomaterial is the iron 

oxide nanoparticle, including magnetite (γ-Fe2O3) 

and magnetite (Fe3O4). Notably, MNPs have a 
significant part in disease finding, drug conveyance, 

and treatment. The critical parts of Magnetic 

nanoparticles are the magnetic core, surface covering, 

functionalized external covering, and the 

hydrodynamic layer. The middle part displays 

superparamagnetism, which can be worked by an 

outside magnetic field. Iron, Cobalt, Nickel is a 

portion of the attractive material utilized for showing 

superparamagnetism. Among these nanoparticles 

with iron oxide is more profitable as it biodegrades 

effectively, simple to plan, ties to ligands, infiltrates 
effectively through cells. Because of attractive 

powers, the conglomeration after some time can be 

seen if the attractive centre isn’t covered by a non-

attractive grid7.  

 

Precipitation from Solution: 

As per the hypothesis proposed by Lamer, 

improvement of homogenous nanoparticles is in the 

increase, and seeding measures are isolated 

specifically in three particular stages. Stage 1, of the 

framework, gains its efficiency, and hence the single 

unit of polymer namely monomer fixation increments 
occur. When the hyper saturated fixation is 

accomplished, adequate energy occurs in the 

framework causing the explosion of the nucleus, 

which concludes with the formation of uniform 

scattered colloids possessing restricted area 

dissemination. The seeds like crystallites present in 

media that triggers heterogeneous nucleation increase 

the range of nanoparticle width.  

 

Precipitation: 

 It is a helpful and simple strategy for producing 
MNPs of ferrites and metal oxides using solid 

solutions. The addition of alkali takes place in a 

passive atmosphere at indoor temperature or at 

higher. The chemical reaction takes place in an 

aqueous media. Under non-oxidizing conditions, pH 
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levels for total precipitation should be in the midst of 

8 and 14, with a stoichiometric proportion of 

(Fe3+/M2+) 2:1. The mean area of the MNPs can be 

restrained to a substantial dimension from 15 to 2 nm 

by controlling the ionic strength and pH of the media 
in which precipitation occurs. Fe3O4nanoparticles 

size decrease as pH and ionic strength increase. PH 

and ionic strength can affect the electrostatic surface 

charge of particles. Under the aforementioned 

conditions, the collection of the essential particles 

brings about magnetite particles that are delivered 

inside Fe(OH)2 gel. This set up affidavit shapes the 

globular glasslike particles. To obtain more modest 

particles, polyvinyl liquor (PVA) is added to iron 

salts. The parts, size, and shape of the formulated 

MNPs rely upon various sorts of salts used such as 

chlorides, nitrates, and sulphates. The arrangement of 
Fe3O4 nanoparticles is made by the hydrolysis in fluid 

arrangements, for example, ferrous and ferric salt at 

various percentages used along with the alkali 1, 6-

hexane diamine. The molar proportion ratio change 

between ferrous to ferric particles can result in the 

production of controlled attractive characteristics of 

Fe3O4 nanoparticles. In this arrangement, soluble base 

substance, a measure of emulsifier, and response 

temperature are the basic factors that predominantly 

affected the eventual outcome. In this technique, the 

significant deterrent for the arrangement of MNPs is 
particle agglomeration because of its nano-size range 

which prompts improve surface energy and enormous 

explicit surface territory. 9 

 

Micro-emulsion:  

The microemulsion is a thermodynamically steady 

combination. The water in oil emulsion is the most 

commonly used microemulsion identified in the 

formulation of homogenous MNPs. W/O emulsion is 

the Emulsion frameworks are made of three 

constituents: water, oil, and a surfactant, which is an 

amphiphilic molecule that diminishes the interfacial 
tension. Reagents containing water nano droplets fill 

in go through quick combination and the blend for 

precipitation response measure utilized for MNPs 

production. Surfactants such as nanodroplet dividers 

encircle the circular outline of the water pool. This 

nanodroplet divider gives the confines to particle 

development which brings about the decrease in the 

particle mean size throughout the gathering and 

interaction of impacting. In this way, the water pool 

size is a boundary to control the size of the round 

nanoparticles (water to surfactant molar proportion, 
W0 esteem). For the most part, the bigger the 

molecule size, the higher the worth of W0. At the 

point when two comparative w/o microemulsions are 

blended, comprising of the favored reactant, will 

bring about a consistent crash between microdroplets 

which mix and then break, and eventually structure 

the aggregation of molecules in colloidal solution and 

get accelerated. The basic principle behind this 

technique being the estimation of surfactant, that 

relies upon various Physico-chemical qualities related 
to the framework including the antagonistic impact 

on properties of particles because of outstanding 

measure of surfactants.10 

 

Thermal Decomposition: 

The presence of iron precursors deterioration and hot 

natural surfactants results in an improved model with 

slender mass appropriation, great mass control, and 

unrivalled crystallinity of dispersible and single 

magnetic NPs. The existence of premium 

semiconductor nanocrystals and oxides in fluid-less 

environments enables the production of nanoparticles 
via thermal degradation. Thermal decomposition of 

raised bubbling natural solvents of an organometallic 

compound with settling surfactant can produce a 

monodisperse magnetic nanocrystal. In warm 

deterioration, the metal is zero valent precursors of 

the organometallic compound with the arrangement 

Iron Pentacarbonyl which prompts the planning of 

metal nanoparticles yet there is oxidation which may 

prompt the taking to the soaring value. The ratio of 

underlying materials such as surfactants, solvents, 

and organometallic compounds will play a significant 
boundary in determining the size and morphology of 

the MNPs.11 

 

Solvo-thermal Routes: 

Aqueous, otherwise known by the term hydrothermal 

approach, is the technique employed in the 

production of MNPs as ultrafine powder. The above 

process was carried out using the fluid media in 

reactors or autoclaves, under the pressure increased 

up to 2000 psi and temperature increased up to 

200°C. Crystals of many unusual substances are 

delivered by the interaction with water. This 
technique is found to be additionally utilized in 

shaping dislodging free specific crystal particles, and 

the molecules created using this strategy may possess 

a higher degree of structural order contrasted with 

different strategies 12. Wang et al. used aqueous 

strategies to make Fe3O4 powder. They arranged the 

nano-sized Fe3O4 powder (40 nm) at a temperature of 

140°C maintained for 6h making a scattering charge 

of energy 85.8 emu g-1.  

 

Gas-Phase Synthesis: 
Spray pyrolysis, laser pyrolysis, arc discharge and 

sonochemical are the demonstrated methods that are 

identified as promising methodologies for the 

continuous and direct synthesis of distinct MNPs 
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while keeping all experimental variables under 

exhaustive control.  

 

Spray Pyrolysis:  Spray pyrolysis technique, 

involves the sprinkling of a homogeneous mixture of 
solute and solvent passes into the solid in the reactor 

sequence, solvent evaporation occurs through 

reactants series, solute condensation as droplets, 

preceded by chemical decomposition using heat, 

followed finally by drying up of the particles that 

precipitate at higher temperatures. By and large 

pyrolysis-related cycles are utilized in the creation of 

the attractive nanoparticles which initiates in the 

presence of Fe3+ ions followed by the portion of the 

natural segments which go about as reducing agents. 

Ferric salt is partially decreased by the natural 

compound in this process, for example, a 
combination of the Fe+3 and Fe+2, in this way the 

advancement of the magnetite, which finally oxidized 

to the maghemite. Without the diminishing agents, 

hematite is created as an option of the maghemite. 

Nature of iron antecedent salts in liquor solutions, 

uniform Fe3 O4 components can be accomplished 

with the molecule sizes ranging from 5 to 60 nm and 

morphology. Subunits are principally made of denser 

components of the round shape, with a normal 

distance between 6 and 60 nm, which have been 

generated using ferric nitrate and ferric chloride 
solutions, individually.13 

 

Laser Pyrolysis: When compared to gas heating in a 

furnace, this method provides for extremely limited 

warming and rapid cooling. Laser light warms iron 

precursor in the vaporous blend and the combination 

of gas streams and makes the small, non-totalled, and 

slight estimated nanoparticles. The pyrolysis is 

maintained at optimum experimental conditions, and 

the size of crystal magnetite nanoparticles changes 

with tight size circulation ranges of 2-7 nm. This 

strategy incorporates the progression of gases, which 
warmed with the normal influx of CO2 laser, to 

support the substance response. Using Fe2O3 NPs, a 

biocompatible magnetic scattering was produced by 

conventional laser pyrolysis of Fe(CO)5 fumes. This 

strategy utilized a beat CO2 laser; thusly limiting the 

time allows the creation of yet more modest particles 
14. 

 

Sonochemical Method: 

Sonochemical strategy is an option cutthroat 

technique to extra tedious manufacture strategies and 
makes new materials for certain momentous 

properties. The acoustic cavitation brings about the 

ultrasonic physicochemical impacts, which prompts 

the readiness of huge and implosive imploding of the 

fluid air pockets. These give the nearby area of 

interest a stunning wave or adiabatic pressure in deep 

of the gas portion of folding eddy. Rules are being 

portrayed tentatively in remembrance of the above 

areas of interest, keeping the pace of reducing the 

temperature past 1010 Ks-1, transitory temperatures 
of 5000 K, and a pressing factor of 1800 atmosphere. 

These limit conditions were useful in the 

development of the new stage and seem to possess a 

cluster shearing force impingement considerable in 

the development of the large mono dispersive 

nanoparticles.15  

 

Arc Discharge: 

 A large number of carbon-covered MNPs are found 

to be delivered through the circular segment release 

strategy, in which precursors of the metal are 

regularly filled inside a cave drill into the graphite 
anode followed by the curve vaporization. This 

method can be used to coat magnetic metal carbides. 

The item is by and large made out of the mixes of 

divergent carbon; including carbon exemplified metal 

particles, pieces of graphite, and carbon nanotubes. 

During aggregation, the metal particles have 

expansive size circulation 16.  

 

Solid Phase Synthesis: 

 Carbon typified Magnetic Nanoparticles are created 

by using strong stage strategies. Occasions mainly 
depend upon raised temperature strengthening of 

substances like Cobalt nanoparticles, Fe2O3, 

polymers, Fe, and carbon powders 17. Though the size 

of the formed nanoparticles and the properties related 

to the magnetic strength of a definitive detailing can’t 

be managed, and even the superparamagnetic 

particles cannot be accomplished since the basic 

molecule dimensions were normally greater than 10 

nm. 

 

Combustion Synthesis: 

An ignition reaction is found to be much useful for 
the manufacture of carbon-exemplified MNPs. 

Martirosyan et al. shaped, CoFe2O4, cobalt ferrite, 

translucent nanoparticles (50-100 nm) through the 

carbon ignition. In their ignition creation technique, 

the exothermic oxidation of carbon delivers a warm 

response wave to multiply all through the strong 

reactant combination of Cobalt Oxide and Fe2 O3 

converting it into the cobalt ferrite. With growing 

burning temperatures, the normal molecule 

dimensions of the magnetic nanoparticles were found 

to be expanded 18.  

 

Hydrogels: 

A colloidal gel is usually a gel that will grow 

incredibly inside the watery arrangement. The gels 

are normally made out of a hydropic natural 
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elastomer segment which is interlinked through either 

non-covalent or covalent bonds. A two-step 

emulsifier-free emulsion polymerization was used to 

produce colloidal gels merged with attractive 

nanoparticles. For example, the thermal delicate 

magnetic immune spheres were formed by covalently 

joining bovine serum albumin (BSA), which is of 

immense value in the immune propensity cleaning 

against BSA antibodies from antiserum 19. 

 

 

 

Evaluation of Magnetic nanoparticles 20: 

 

Characterization 

parameters 

Analytical methods/Instrumentation 

Particle size photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), 

scanning electron microscopy (SEM) 

Surface electrical 

potential 

Zeta potential  measurement  

Molecular weight Gel permeation chromatography 

Density  Gas pycnometer 

Drug Release In vitro diffusion cell,dialysis bag 

 

CONCLUSION:  
Though progress in clinical applications of 

magnetically targeted carriers has been slow since 

first introduced in the 1970s, the potential for this 

technique remains great. Rapid developments in 

particle synthesis have enabled the use of new 

materials for more efficient capture and targeting and 

novel strategies are being developed for applying 

magnetic fields which could lead to treatments for 

diseases such as cystic fibrosis and localized 

cancerous tumors. Though clinical trials are few, the 

results have been promising. While magnetic 

targeting is not likely to be effective in all situations, 

with further development it should provide another 

tool for the effective treatment of a variety of 

diseases. 
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S. 

No 

Nanoparticles Therapy Application Reference  

1. Iron oxide nanoparticles with 

dextran coating 

Herpes simplex virus 

vector 

Intra-arterial Rainov et al. 1995 21 

2. Iron oxide nanoparticles L6 IgG monoclonal 

antibody 

Intravenou intraarterial, 

intratumoral 

Remsen et al. 1996 22 

3. Iron oxide nanoparticles with 

starch coating 

 

In vivo application of 

magnetic nanoparticles 

in cancer therapy. 

Mitoxantrone 

Intra-arterial Alexiou et al. 2000 23 

4. Iron oxide nanoparticles 

(Fe3O4) 

Hyperthermia  Intratumoral Hilger et al. 2002 24 

5. Iron oxide nanoparticles 

(Fe3O4) 

Iron oxide 

nanoparticles (Fe3O4) 

within liposomes 

Intratumoral Tanaka et al. 2005 25 

6. Iron oxide nanoparticles 

(Fe3O4) with dextran coating 

Anti-VEGF monoclonal 

antibody 

Intratumoral Chen et al. 2006 26 

7. Ironoxide nanoparticles 

(Fe3O4)coated with poly 

lacticacid 

Arsenic trioxide Intravenous Li et al. 2007 27 

8. Iron oxide nanoparticles 

(Fe3O4) with aminosilane 

coating 

Hyperthermia  Intratumoral Johannsen et al. 2007 28 

9. Iron oxide nanoparticles with 

dextran coating and 111In-

marked L6monoclonal 

antibody 

Hyperthermia  Intratumoral DeNardo et al. 2007 29 

10. Iron oxide nanoparticles with 

polylysine coating 

 

NM23-H1 gene (an 

anti-metastatic gene) 

Intravenous Li et al. 2009 30 

11. Iron oxide nanoparticles 

(Fe3O4) 

Hyperthermia 

(alternating magnetic 

field)   

Intravenous/intratumoral Balivada et al. 2010 31 

12. Iron oxide nanoparticles 

(Fe2O3,Fe3O4) 

Hyperthermia 

(alternating magnetic 

field)   

Intratumoral Bruners et al. 2010 32 

13. Iron oxide nanoparticles with 

PEG coating 

Arginine-glycine-

aspartic acid or 

chlorotoxin 

Intravenous Fang et al. 2010 33 

14. Iron oxide nanoparticles with 

dextran coating and binding for 

tumor-specific antigenuMUC-1 
 

siRNA against BIRC5 Intravenous Kumar et al. 2010 34 

15. Iron oxide nanoparticles with 

dextran coating 

Human adenovirus 

type 5 early region 

1A (E1A) 

Intratumoral Shen et al. 2010 35 

16. Iron oxide nanoparticles 

(Fe3O4) 

Adenoviruses Intratumoral Tresilwised et al. 2010 36 
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