

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187 https://doi.org/10.5281/zenodo.7629194

Available online at: http://www.iajps.com

Research Article

APPLICATION OF BOX-BEHKEN DESIGN FOR PREPARATION OF LOMEFLOXACIN LOADED SOLID LIPID NANO PARTICLES FOR OCULAR DELIVERY

¹Manthati Akanksha, ²Zeenath Ruhy

¹Mother Teresa College of Pharmacy

Article Received: December 2022	Accepted: January 2023	Published: February 2023
Abstract:		
The aim of the present study was to optimize	a solid lipid nanoparticle (SLN) o	of Lomifloxacin by investigating the
relationship between design factors and expo	erimental data using response sur	face methodology. A Box-Behnken
design was constructed using solid lipid (X	(1), surfactant (X2), and drug/lipi	id ratio (X3) level as independent
factors. SLN was successfully prepared b	y a modified method of melt-e	emulsion ultrasonication and low
temperature- solidification technique using	glyceryl monostearate as the solic	d lipid, and poloxamer 188 as the
surfactant. The dependent variables were ent	rapment efficiency (EE), drug load	ling (DL), and turbidity. Properties
of SLN such as the morphology, particle size,	, zeta potential, EE, DL, and drug	release behavior were investigated,
respectively. As a result, the nanoparticle de.	signed showed nearly spherical pa	urticles with a mean particle size of
248 nm. The polydispersity index of particle s	size was 0.277 ± 0.058 and zeta pc	otential was - 8.74 mV. The EE (%)
and DL (%) could reach up to $83.29\% \pm 1.23\%$	% and 10.11% ± 2.02%, respective	ly. In vitro release studies showed a
burst release at the initial stage followed by	a prolonged release of Lomefloxa	ncin from SLN up to 48 hours. The
release kinetics of the optimized formulation	best fitted the Peppas–Korsmeyer	model. These results indicated that
the Lomefloxacin-loaded SLN could potential	lly be exploited as a delivery syste	em with improved drug entrapment
efficiency and controlled drug release.		

Keywords: Box-Behken Design, Lomefloxacin, Solid Lipid Nano Particles, Ocular Delivery

Corresponding author:

Manthati Akanksha,

M. Pharmacy, Department of Pharmaceutics Mother Teresa College of Pharmacy, Ghatkesar, NFC Nagar Hyderabad, Telangana, India. E-mail: mamthajalans@gmail.com

Please cite this article in press Manthati Akanksha et al, Application Of Box-Behken Design For Preparation Of Lomefloxacin Loaded Solid Lipid Nano Particles For Ocular Delivery., Indo Am. J. P. Sci, 2023; 10 (02).

INTRODUCTION:

Pharmaceutical nanoparticles (NPs) are ultrafine colloidal particles with a size ranging from 10 to 1000 nm that contain drugs and exhibit distinct properties from their source materials [1]. Antimicrobial-loaded NPs, for example, can enter cells via endocytosis and release the medicine, thereby eliminating microbe-induced intracellular infections [2]. NPs have a number of advantages, including the capacity to extend drug release. For example, in ocular delivery, they have been observed to enhance the time spent on the corneal surface, boosting ocular bioavailability and lowering systemic toxicity. They also allow lower drug concentrations to be employed in the formulation while generating high drug concentrations at the site of action by enhancing bioavailability [3]. Because of their small size, NPs are particularly well suited to this task, as particles smaller than 10 nm often cause no or very little discomfort [4,5]. Another element to examine before the commercial production of particle systems is stability [6].

Lomefloxacin is a fluoroquinolone used to prevent and treat a wide variety of infections in the body. Lomefloxacin is a bactericidal fluoroquinolone agent with activity against a wide range of gram-negative and gram-positive organisms. The bactericidal action of lomefloxacin results from interference with the activity of the bacterial enzymes DNA gyrase and topoisomerase IV, which are needed for the transcription and replication of bacterial DNA. DNA gyrase appears to be the primary quinolone target for gram-negative bacteria. Topoisomerase IV appears to be the preferential target in gram-positive organisms. Interference with these two topoisomerases results in strand breakage of the bacterial chromosome, supercoiling, and resealing. As a result DNA replication and transcription is inhibited.

The aim of the present study was to optimize a solid lipid nanoparticle (SLN) of Lomifloxacin by investigating the relationship between design factors and experimental data using response surface methodology.

MATERIALS:

The powered Lomefloxacin was supplied by Micro lab, Poloxamer 188 was purchased from Lobachem, Mumbai, Glyceryl Monostearate were pur- chased from Colorcon Asia Pvt. Ltd., Goa, Methanol was of high-performance liquid chromatography (HPLC) grade. All other reagents and solvents were of analytical reagent grade

METHODOLOGY:

Preparation of SLN

SLN was prepared according to previous articles with some modification [184] by the following meltemulsion ultrasonica- tion and low temperaturesolidification methods. In brief, aqueous and oil phases were separately prepared in glass vials. Drug and a specified amount of GMS were dissolved in a spec- ified volume of ethanol (2 mL) and heated above the melting temperature of GMS (70 °C). Hydrophilic surfactants and dou- ble distilled water were mixed at 70°C and added to the melted oil phase. The resulting suspension was continually stirred by mechanical agitation (DC-40, Hangzhou Electrical Engineer- ing Instruments, China) at 400 rpm for 15 minutes at 70 °C. The original warm emulsion was further treated for 5 minutes (work 2 seconds and stand 3 seconds) by a Lab ultrasonic cell pulverizer (JY92-II, Ningbo Scientz Biotechnology Co., Ltd. China) at 600 W to form a nanoemulsion. This was rapidly cooled by immersing the beaker into icy water. Agitation continued until the nanoemulsion vielded a uniform disper- sion of nanoparticles.

Experimental design:

In this study, a 17-run, 3-factor, 3-level Box-Behnken design was employed to construct polynomial models for the optimization process, because it requires few runs with 3 or 4 variables. This design was suitable for investigating the quadratic response surface and for constructing a second- order polynomial model using Design-Expert software (Trial Version7.1.6, Stat-Ease Inc., MN).The design consisted of replicated center points and a set of points lying at the midpoints of each edge of the multidimensional cube, which defined the region of interest used to evaluate the main effects, interaction effects, and quadratic effects of the formulation ingredients, and to optimize the formulation. The non-linear quadratic model generated by the design was:

 $Y = A_0 + A_1X_1 + A_2X_2 + A_3X_3 + A_4X_1X_2 + A_5X_2X_3 +$ $A_6X_1X_3 + A_7X_1^2 + A_8X_2^2 + A_9X_3^2$, in which Y is the measured respons of the dependent variables associated with each factor-level combination; A0 - A_1 are the regression coefficients of the respective variables and their interaction terms computed from the observed experimental values of Y; and X_1 , X_2 , X_3 are the coded levels of independent variables. The term $X_1 X_2$ and X^2 (i = 1, 2 or 3) represent the interaction and quadratic terms respectively [185].Factors evaluated in this study were the amount of GMS (X 1), concentration of poloxamer (X2) and the ratio of drug/lipid (X_3) as the independent variables which were represented by -1, 0 and +1, analogous to the low, middle, and high values respectively as described in Table 1. The studied dependent responses were

entrapment efficiency (EE%) (Y_1), drug loading (DL%) (Y_2), turbidity (NTU) (Y_3) with constraints applied as

described in Table 1. The experiment design matrix generated by the software was shown in Table2.

Table 1 Variables and their levels	in the B	ox-Behnken	design	
	Levels			
	-1	0	1	
Independent variables				
X_1 Amount of lipid (<i>w</i> / <i>v</i>)	5%	7.5%	10%	
X_2 Amount of surfactant (w/v)	2%	5%	8%	
X_3 Drug/lipid ratio (<i>w</i> / <i>w</i>)	5%	10%	15%	
Dependent variables			Constraints	
Y1 Entrapment efficiency (EE%)Y2 Drug loading (DL%)Y3 Turbidity (NTU)			Maximize Maximize Minimize	

Table 2 Box-Behnken experimental design

Formulation	Lipid	Surfactant	Drug/lipid ratio	
	(w/v, X ₁)	(w/v, X2)	(w/w, X3)	
1	5%	2%	10%	
2	10%	8%	10%	
3	5%	8%	10%	
4	5%	5%	15%	
5	7.5%	5%	10%	
6	10%	2%	10%	
7	7.5%	5%	10%	
8	7.5%	5%	10%	
9	7.5%	2%	5%	
10	7.5%	5%	10%	
11	10%	5%	15%	
12	7.5%	5%	10%	
13	5%	5%	5%	
14	7.5%	2%	15%	
15	10%	5%	5%	
16	7.5%	8%	5%	
17	7.5%	8%	15%	

Entrapment efficiency and drug loading determination:

The content of Lomefloxacin was determined by the high performance liquid chromatography method. The chromato- graphic system consisted of a Shimadzu LC-10AT solvent delivery pump (Kyoto, Japan) equipped with a 20 \Box L loop and a UV visible detector. A Kromosil (250 x 4.6 mm) analyti- cal column was used. The eluate was monitored at 275 nm. The mobile phase was methanol and water (45:55, v/v) with a flow speed of 1.0 mL . min⁻¹ at room temperature.

The calibration curve of peak area against concentration of Lomefloxacin is shown in equation (1):

 $A = 42832C + 3234.7 \tag{1}$

It fit over the range 3.2–32 mg . L⁻¹ with a correlation coefficient of r = 0.9999 (where A = peak area and C = Lomefloxacin concentration).

To determine entrapment efficiency and drug loading, at first, the appropriated SLN was precipitated by adding saturated NH₄SO₄ solution, and then collecting the serum and solid residue, respectively after centrifugation (CS120GXL, Hitachi, Japan) at 50,000 rpm for 15 minutes. The solid residue was dispersed in 40 mL phosphate buffered saline (PBS) solution (pH 7.4), in order to dissolve the free drug absorbed on the surface of nanoparticles, and then centrifuge-separated. Both the drug content in serum and that in PBS determined by HPLC were labeled as W_{free} . The efficiency of drug encapsulation (EE) and drug loading of nanoparticles were calculated according to equations (2) and (3),

$$EE = \frac{W_{total} - W_{free}}{W_{total}} \times 100\%$$
(2)

$$DL = \frac{W_{total} - W_{free}}{W_{total} - W_{free} + W_{lipid}} \times 100\%$$
(3)

where W_{tota} were the weight of drug added in the system, and the weight of lipid added in the system, respectively.

Turbidity measurements:

For the same samples used in the particle size analysis, measurements of turbidity represent the effect of suspended solids blocking the transmission of light through a body of water, which can be used as an indirect way to determine particle size in the dispersion system. Dispersion turbidity in nephlometric turbidity units (NTU) was measured using a WZS-185 high turbidity Spectrometer (Shanghai Precision & Scientific Instrument Co., Ltd, China). All the containers used were cleaned thoroughly. All studies were repeated as duplicates, good agreement being found among with measurements.

Particle size and zeta potential analysis:

The particle size and zeta potential of optimum SLN dispersions were measured by Zetasizer (3000SH, Malvern Instruments Ltd., UK). All samples were diluted with double distilled water to reach a suitable concentration before measurement.

scanning electron microscopy (seM) analysis:

Scanning electron micrographs were performed using a KYKY-1000B scanning electron microscope (KYKY technol- ogy development Ltd., China). A drop of the SLN dispersion was mounted on aluminium stubs covered with a glass lamella, airdried, gold coated under vacuum, then examined.

In vitro release study:

The formulation was subjected to in vitro release studies using 150 mL of artificial tear fluid (ATF) pH 7.4 as dissolu- tion medium (maintained at 37 ± 0.5 ⁰C), which is equivalent to the pH of the eye. In vitro release studies were performed using the dialysis bag method, modified to maintain a sink condition and achieve satisfactory reproducibility. Two mL of Lomefloxacin-loaded SLN dispersion was first poured into the dialysis bag (molecular weight cut off 12000–14000) with the two ends fixed by thread and placed into the pre- heated dissolution media. The

suspension was stirred at 37 ± 0.5 °C, using a RCZ-8A Drug Dissolution Tester (Tianjin Medical Instrument Factory, China) with paddle rotating at 50 rpm. Five mL of the sample was withdrawn at fixed time intervals and the same volume of fresh medium was added accordingly. Samples were analyzed by HPLC as described above. The composition of ATF used was: sodium chloride 0.670 g, sodium bicarbonate 0.200 g, calcium chloride dihydrate 0.008 g, and purified water q.s. 100 mL.20

RESULTS AND DISCUSSION:

statistical analysis of experimental data by Designexpert software:

The results of the experimental design were analyzed using Design-Expert software, which provided considerable useful information and reaffirmed the utility of statistical design for conduct of

experiments. The selected indepen- dent variables including the amount of GMS, concentration of poloxamer 188, and drug/lipid ratio, significantly influenced the observed responses for EE (%), DL (%) and turbidity, which are presented in Table 3. Polynomial equa- tions involving the main effect and interaction factors were determined based on estimation of statistical parameters such as multiple correlation coefficient, adjusted multiple correlation coefficient, and the predicted residual sum of squares generated by Design-Expert software. The statistical validation of the polynomial equations was established by ANOVA provision available in the software. Therefore, the optimum values of the variables were determined according to the obtained experimental data using the Design-Expert software, based on the constrained criterion of desirability presented

Table 3 Observed and predicted value of encapsulation efficiency (Y₁), drug loading (Y₂) and turbidity (Y₃) of formulations in the Box-Behnken design

Formulation	n Observed Y ₁	Predicted <i>Y</i> ₁	Observed Y ₂	Predicted <i>Y</i> ₂	Observed Y ₃	Predicted Y ₃
1	41.26	34.64	3.95	4.04	32	36.5
2	74.68	81.30	6.96	6.88	26	21.5
3	75	70.35	6.95	6.79	42	50
4	30.13	39.60	4.32	5.39	24	15.5
5	63.68	65.68	5.98	6.16	35	35.6
6	53.91	58.56	5.11	5.27	124	116
7	67.32	65.68	6.32	6.16	33	35.6
8	67.53	65.68	6.32	6.16	38	35.6
9	36.38	41.20	1.79	2.68	69	68.5
10	63.11	65.68	5.92	6.16	26	35.6
11	76.4	74.60	10.29	11.28	39	43
12	66.74	65.68	6.24	6.16	46	35.6
13	55.85	57.65	7.74	6.76	23	19
14	56.75	53.90	7.84	6.69	62	66
15	67.01	57.54	3.26	2.20	34	42.5
16	80.77	83.62	3.88	5.02	31	27
17	74.74	69.92	9.61	8.72	26	26.5

Response surface analyses plotted in threedimensional model graphs for depicting the effects of the predetermined factors on the response of the entrapment efficiency, drug loading, and turbidity are shown in Figures 1 to 6, based on the model polynomial functions, to assess change in the response surface. The response surface plots were used to study the interaction effects of 2 independent variables on the responses or dependent variables, when a third factor is kept at constant level [188].When these plots were carefully observed, the qualitative effect of each variable on each response parameter could be visualized.

Effects on Entrapment efficiency (Y1):

The entrapment efficiency varies from 30.13% (formulation 4) to 80.77% (formulation 16) for various factor level combinations (Table 3). The independent factors affecting the entrapment efficiency were the amount of GMS (X₁) and surfactant levels (X₂) (P < 0.05, Table 4 and Figure

1). The effect can be explained by the following quadratic equation:

The positive value before a factor in the regression equa- tion indicates that the response increases with the factor and vice versa [189] The value of the correlation coefficient (r²) of equation 4 was found to be 0.9396, indicating a good fit. In Figure 1, the effect of varying the amount of lipid and emulsifier on the entrapment efficiency (Y_1) was studied when the drug/lipid ratio was kept constant. The lipid level (X_1) had a significant and positive effect on Y1 as revealed by the positive value in the quadratic equation. The result showed that the entrapment efficiency rapidly increased as the amount of lipid increased. Increasing the amount of GMS, was bound to increase the % of EE because of the increased concentra- tion of mono-, di-, and triglycerides, which act as solubiliz- ing agents for highly lipophilic drugs and provide more and more spare space to accommodate excessive drugs [190]. However increasing the amount of drug/lipid ratio while keeping the emulsifier level constant, as shown in Figure 2, would decrease the entrapment efficiency, probably because redundant drug becomes insoluble in GMS.

The entrapment efficiency could be increased with drug concentration (X_3) in the internal phase as more of the drug would be available for entrapment. The surfactant level (X₂) also has a significant and positive effect on the entrapment efficiency (Y_1) . In Figure 3, the entrapment efficacy was significantly increased by increasing the amount of emulsifier and the amount of lipid. This effect was, probably due to the increased viscosity of the medium, because increasing the amount of lipid resulted in faster solidification of the nanoparticles. This would also prevent drug diffusion to the external phase of the medium.[191] As the percentage of emulsi- fier increased, part of the Lomefloxacin was incorporated in the surfactant layer at the surface of the SLN, leading to a high entrapment efficacy.

Figure 1 response surface plot showing effect of the amount of lipid (X₁) and surfactant levels (X2) on entrapment efficiency (Y₁).

Figure 2 response surface plot showing effect of the amount of lipid (X₁) and drug/ lipid ratio (X₃) on entrapment efficiency (Y₁).

Figure 3 response surface plot showing effect of the amount of surfactant (X_2) and drug/lipid ratio (X_3) on entrapment efficiency (Y_1) .

Figure 4 response surface plot showing effect of the amount of lipid (X1) and drug/lipid ratio (X) on drug loading (Y).

Effects on drug loading (Y2):

According to the results obtained from the experiments for drug loading, the value of drug loading varied from 1.79% (formulation 9) to 10.29% (formulation 11) (Table 3). The %DL was clearly influenced by surfactant concentration and the drug/lipid ratio as seen in Table 4. The following equation can explain the effect of factor levels on %DL:

$\begin{array}{l} Y2 = 6.16 + 0.33 X_1 + 1.09 X_2 \ \textbf{-}1.93 X_3 \ \textbf{-}0.28 X_1 X_2 + \\ 2.61 X_1 X_3 \ \textbf{-} \ \textbf{0.079} X_2 X_3 \ \textbf{+} \ \textbf{0.11} X_1 \ \ \textbf{^2} \ \textbf{-} \ \textbf{0.52} X \ \ \textbf{_2}^2 \ \textbf{+} \\ \textbf{0.14} X_3 \end{array}$

The main effects of X_1 , X_2 , and X_3 represent the average result of changing 1 variable at a time from its low level to its high level. The negative coefficients before independent variables indicate an unfavorable effect on the %DL, while the positive coefficients

indicate a favorable effect on the %DL. The interaction term show how the %DL changes when 2 variables simultaneously changed. Analyzing these are coefficients in the above second- order polynomial mode shows how the increase of drug/lipid ratio and emulsifier level enhances the drug loading of SLN, making it more efficient than for GMS because of the positive and large coefficient of these particles. The cross-interaction of GMS and drug/lipid ratio on %DL of SLN was significant because the coefficient of X_1X_3 was larger than others. Furthermore, the F-value for the full quadratic equation for the %DL of SLN was [191], indicating that the second-order response surface model was significant at the 5% level. Among the 3 independent variables, the lowest coefficient value is for $X_1(A_1=0.22$ and P=0.05) indicating that this variable is insignificant in prediction of drug loading.

Figure 5 response surface plot showing effect of the amount of lipid (X_1) and surfactant levels (X_2) on drug loading (Y_2) .

Figure 6 response surface plot showing effect of the amount of lipid (X_1) and surfactant levels (X_2) on turbidity (Y_3) .

By analyzing the response surfaces for drug loading, it was obvious that the level of drug/lipid ratio and emulsifier exert positive influence on drug loading. As Figure 4 shows, an increase of lipid and emulsifier concentration leads to a non-linear increase in drug loading when the drug/lipid ratio is fixed. When the amount of surfactant is increased, the percent of DL is thought to increase because of enhanced entrapped drug; the reason why DL% is increased on the enhanced lipid is that the increased content of lipids can provide more and more spare space to accommodate excessive drugs. At the same time, according to equation (3) and Figure 5, for constant amount of surfactant concentration, when drug concentration increases, the amount of excipients increases, which results in reduced drug loading. effects on turbidity (Y3)

Turbidity could have caused some obstruction when light was transmitted to a suspension. Turbidity value depends significantly on the particle size and thus can be used indi- rectly to reflect particle size. The turbidity of SLN ranged from [189] NTU (formulation 14) to [190] NTU (formulation 8) (Table 3) with the selected levels of variables. Smallsized particles are highly desirable in order to increase the permeability through cornea surface. Results in Table 4 demonstrated that turbidity was significant but negatively dependent upon the surfactant level. The full second-order polynomial model for turbidity obtained by the response surface regression procedure using Design-Expert software is given by:

Y3 = $35.6 + 12.75X_1 - 20.25X_2 - 0.75X_3 - 27X_1 X_2 + X_1 X_3 + 0.5X_2 X_3 + 1.7X_1^2 + 18.7X_2^2 - 7.3X_3^2$ (r = 0.9693) (6)

By analyzing these coefficients in the above secondorder polynomial mode, turbidity is distinctly influenced by surfactant concentration and lipid ratio as seen in Table 4; the cross-interaction of poloxamer 188 and GMS on the size of SLN was significant because the coefficient of X_1X_2 was far greater than others. Furthermore, the F-value for the full quadratic equation for the SLN particle size was 12.07, indicating that the second-order response surface model was significant at the 5% level.

As Figure 6 shows, the increase in emulsifier could efficiently reduce the particle size of SLN. On increasing the concentration of poloxamer 188, the particle size was decreased. This might be due to the surfactant-induced reduction in surface tension between the aqueous phase and organic phase. In addition, surfactant helps to stabilize the newly generated surfaces and prevents particle aggregation [192]. The increase in GMS concentration would lead to the increase in size. The fact that the size of lipid nanoparticles is highly dependent on lipid concentration can be explained in terms of the tendency of the lipid to coalesce at high lipid concentration. According to Stoke's law, this behavior can be explained by a difference in density between the internal and external phases[193].

Optimization and validation:

The desirability function was probed using Design-Expert software to acquire the optimized formulation. The optimum formulation was based on the set criteria of maximum entrap- ment efficiency, maximum drug loading, and minimum par- ticle size. Therefore a new batch of SLN with the predicted levels of formulation factors was prepared to confirm the validity of the optimization procedure. The composition of optimized formulation was achieved with 10% (w/v) GMS, 8% (w/v) surfactant and 13.5 mg/mL Lomefloxacin, which fulfill the requirements of optimization. The optimized for- mulation has entrapment efficiency $83.29\% \pm 1.23\%$, drug loading $10.11\% \pm 2.02\%$, and turbidity 21 ± 3 NTU, which were in good agreement with the predicted values.

Physicochemical characterization of nanoparticles:

SEM studies revealed that Lomefloxacin-loaded SLN were almost spherical in shape with smooth morphology which appeared as white bright dots (Figure 7). However, in order to obtain more precise information on the size distribution, particle size and zeta potential, measurements were per- formed in the following study.

	Coefficient	<i>P</i> -value	Coeffici	ent P-value	Coefficient	<i>P</i> -value
Intercept	5.8663	0.0147*	6.25	0.0123*	12.07	0.0017*
X_1 (5%, 10%)	10.7146	0.0136*	0.72	0.4257	15.41	0.0057*
$X_2(2\%, 8\%)$	30.0828	0.0009*	7.76	0.0271*	38.88	0.0004*
<i>X</i> ₃ (5%, 15%)	0.0087	0.9282	24.20	0.0017*	0.05	0.8240
$X_1 \square X_2$	0.7408	0.4179	0.26	0.6235	34.56	0.0006*
$X_1 \square X_3$	5.4282	0.0526	22.29	0.0022*	0.05	0.8339
$X_2 \square X_3$	3.0690	0.1233	0.02	0.8906	0.01	0.9164
$\begin{array}{c} x_1 \\ 2 \end{array}$	1.5953	0.2470	0.04	0.8496	0.14	0.7154
<i>X</i> ₂ 2	0.0023	0.9634	0.92	0.3687	17.45	0.0042*
X3 2	1.0101	0.3484	0.07	0.8021	2.66	0.1470

Table 4 Statistical analysis results of entrapment efficiency, drug loading, and turbidity entrapment efficiency(Y₁) drug loading (Y₂) turbidity(Y₃)

Figure 7 scanning electron micrographs of Lomefloxacin loaded solid lipid nanoparticles consisting of glyceryl monostearate 10%, poloxamer 8%, drug/lipid ratio13.5% (X5000).

It was known that the particle size distribution was one of the most important characteristics for evaluation of the stability of colloidal systems. The mean particle size (z-ave) and the polydispersity index (PI) were 2 measures to evaluate the width of the size distribution. Figure 8 shows that the particle size distribution of Lomefloxacin-loaded SLN was 248 ± 4.8 nm; the polydispersity index of particle size was 0.277 ± 0.058 (run 3).

Zeta potential is the measure of overall charges acquired by particles in a particular medium and is considered as one of the benchmarks of stability of the colloidal system. Particles will repel each other if the systems have high posi- tive or negative value of zeta potential, and a system having value ±30 mV is considered a stable formulation if dispersed in a liquid as colloidal dispersion. In the present study, the zeta potential value of optimum formulation was -8.74mV. The absolute value of zeta potential was lower than those values reported in the literature. This might be attributed to poloxamer 188, a nonionic surfactant which decreases the electrostatic repulsion between the particles and sterically stabilizes the nanoparticles by forming a coat around their surface [194]. The negative charge of SLN may result from fatty acids released from the hydrolysis of GMS. In such а system, the hydrophilic emulsifiers were thought to align alongside each other, imparting more rigidity and strength to the emulsifier film through hydrogen bonding [195].

In addition, with regard to particle distribution, the polydispersity index is an indicator of the homogeneity

of the size distribution. The PI value of 0.277 indicated that the optimal composition could be used to produce a stable SLN dispersion with a relatively narrow size distribution for Lomefloxacin -loaded SNL.

In vitro drug release behavior:

The drug release behavior in vitro of Lomefloxacin 1loaded SNL was investigated using a dialysis membrane in pH 7.4 ATF (37±0.5). In Figure 9, free Lomefloxacin exhibited a rapid release of 90% of drug within 6 hours, whereas the release profiles of SNL indicated a biphasic pat- tern with a burst release during the first 8 hours, followed by a sustained release over 48 hours. The initial fast release of drug from the SNL could be explained by drug desorption from the outer surface of the SNL and the larger specific surface of the smaller particles increasing the initial drug release rate. Furthermore, SLN had been prepared so as not to remove existing free drug, but the initial burst related to free drug could not be ignored. The mechanism of release was determined by finding the R2 value for each kinetic model viz First-order, Higuchi, Peppas-Korsmeye, and Hixon-Crowell model corresponding to the release data obtained. The Peppas-Korsmeye model was the best (y = 0.9428 x - 0.9385, $R^2 = 0.9969$) in that the R² value of the Korsmeyer-Peppas model is much larger than other kinetic models. Thus it can be said that the drug release follows Peppas-Korsmeyer model mechanism. The n value is 0.9428 which is above 0.89, so that the release can be characterized by super case I transport, [196] which means the drug release rate is dominated by polymer disentanglement and erosion.

Figure 8 Particle distribution of Lomefloxacin -loaded solid lipid nanoparticles.

Figure 9 In vitro drug release profile of Lomefloxacin from solid lipid nanoparticles (SLN) and free drug (pH 7.4 artificial tear fluid was used as dialysis medium).

SUMMARY AND CONCLUSION:

The purpose of the present study was to optimize a solid lipid nanoparticle (SLN) of Lomefloxacin by investigating the relationship between design factors and experimental data using response surface methodology. А Box-Behnken design was constructed using solid lipid (X_1) , surfactant (X_2) , and drug/lipid ratio (X_3) level as independent factors. SLN was successfully prepared by a modified method of melt-emulsion ultrasonication and low temperaturesolidification technique using glyceryl monostearate as the solid lipid, and poloxamer 188 as the surfactant. The dependent variables were entrapment efficiency (EE), drug loading (DL), and turbidity. Properties of SLN such as the morphology, particle size, zeta potential, EE, DL, and drug release behavior were investigated, respectively. As a result, the nanoparticle designed showed nearly spherical particles with a mean particle size of 248 nm. The polydispersity index of particle size was 0.277 \pm 0.058 and zeta potential was - 8.74 mV. The EE (%) and DL (%) could reach up to $83.29\% \pm 1.23\%$ and $10.11\% \pm 2.02\%$, respectively. In vitro release studies showed a burst release at the initial stage followed by a prolonged release of Lomefloxacin from SLN up to 48 hours. The release kinetics of the optimized formulation best fitted the Peppas–Korsmeyer model. These results indicated that the Lomefloxacin-loaded SLN could potentially be exploited as a delivery system with improved drug entrapment efficiency and controlled drug release.

REFERENCES:

 Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Adibkia, K. Box-Behnken experimental design for preparation and optimization of ciprofloxacin hydrochloride-loaded CaCO3 nanoparticles. J. Drug Deliv. Sci. Technol. 2012, 29, 125–131. [CrossRef]

- 2. Abdollahi, S.; Lotfipour, F. PLGA-and PLAbased polymeric nanoparticles for antimicrobial drug delivery. Biomed. Int. 2015, 3, 1–11.
- Das, S.; Suresh, P.K. Nanosuspension: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 242–247. [CrossRef]
- Gupta, H.; Aqil, M.; Khar, R.; Ali, A.; Bhatnagar, A.; Mittal, G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J. Drug Target. 2011, 19, 409– 417. [CrossRef] [PubMed]
- Bu, H.Z.; Gukasyan, H.J.; Goulet, L.; Lou, X.J.; Xiang, C.; Koudriakova, T. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr. Drug Met. 2007, 8, 91–107. [CrossRef] [PubMed]
- Duxfield, L.; Sultana, R.; Wang, R.; Englebretsen, V.; Deo, S.; Rupenthal, I.D.; Al-Kassas, R. Ocular delivery systems for topical application of anti-infective agents. Drug Dev. Ind. Pharm. 2016, 42, 1–11. [CrossRef]
- 7. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
- Takenouchi T, Ishii C, Sugawara M, Tokue Y, Ohya S: Incidence of various gyrA mutants in 451 Staphylococcus aureus strains isolated in Japan and their susceptibilities to 10 fluoroquinolones. Antimicrob Agents Chemother. 1995 Jul;39(7):1414-8. [Article]
- Drusano GL, Johnson DE, Rosen M, Standiford HC: Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993 Mar;37(3):483-90. [Article]