

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187 https://doi.org/10.5281/zenodo.8332693

Available online at: <u>http://www.iajps.com</u>

Research Article

DESIGN, SYNTHESIS AND MOLECULAR DOCKING STUDIES OF NOVEL BIS-L-PROLINE INTERCALATORS AS POSSIBLE ANTICANCER AGENTS

Saarangi Ramesh^{*1}, NJP Subhasini², T. Parthasarathy³

^{*1}Department of Pharmacy, University College of Technology, Osmania

University, Hyderabad, Telangana, India.

^{2,3}Department of Chemistry, University College of Science, Osmania University,

Hyderabad, Telangana, India.

Abstract:

In the present study, L-proline derivatives and linker chains are designed, synthesized and were characterized using spectral analysis. In the present study, 14 L-proline derivatives were synthesised among which five derivatives were consisting of symmetrical linker chains and nine derivatives are of asymmetrical linker chains. The synthesised compounds are then interacted through H-bond interactions with Topoisomerase-I (Human DNA) enzyme active sites. The docking analysis of L-proline derivative reveals that, among 14 compounds synthesised, compound IVL6 and IIIL4 were found to be more potent towards Topoisomerase-I enzyme with London dG scoring values of -12.8472 and -11.5501 respectively. All the synthesized compounds were then characterized using spectral analysis. Hence the present study forms the basis for the synthesis and characterization of L-proline derivatives as possible bis-intercalators to potentially act as anticancer agents.

Key words: Topoisomerase I enzyme, L-proline derivatives, docking analysis, H-bond interactions and anticancer agents.

Corresponding author:

T. Parthasarathy,

Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, India. Mobile no: +91-9949652118 Email: sarathychem@gmail.com

Please cite this article in press Saarangi Ramesh et al, Design, Synthesis And Molecular Docking Studies Of Novel Bis-L-Proline Intercalators As Possible Anticancer Agents, Indo Am. J. P. Sci, 2023; 10 (08).

INTRODUCTION:

As per the reports received from WHO (World health Organization), cancer is the second deadliest disease responsible for global cause of deaths. The rate of incidence of lung cancer among all the cancer types is of high priority followed by breast cancer in females and then to colorectal cancer [1]. Hence keeping in view the mortality rate due to cancer, it is mandatory to develop new anticancer agents. In the present study, an attempt is made to develop novel Lproline derivatives as possible anticancer agents.

Docking Studies:

Selection of PDB Structure

PDB (Protein Data Bank) is a collection of structures in crystal form for protein molecules having ligands bounded including co-activators. The X-ray crystal arrangement of human DNA topoisomerase in association with camptothecin and covalent complexation with the A22 base pair DNA duplex has been acquired from PDB based on the Ramachandran's plot analysis and with excellent resolution. [2, 3]. The structure is chosen as a result of its high resolution 3.0 when compared to alternative possibilities. According to the plot Ramachandran's study, human DNA topoisomerase (1T8I) possesses 87.3% of its residues in the quadrangle's most beneficial zone, and there isn't a single residue in the quadrangle's least advantageous area [4, 5].

Ligand Generation and Optimization

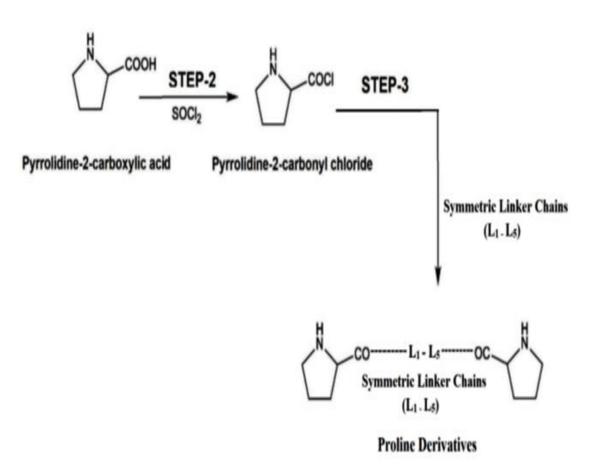
The structures of the synthesised L-proline derivatives were drawn utilising ACD/ChemSketch (12.0) software and then saved in to mol file format [6, 7]. The stored ligand compounds were subsequently uploaded into Molecular Operating Environment (MOE) and strengthened using a systematic conformer searching, geometrical optimise, and minimization of energy of the least energy structures using the MMFF94 (Merck Molecular Force Field) [8, 9]. The various compounds were then stored in mol file format for further binding investigations.

Structure based pharmacophore generation

A pharmacophore technique based on structure was used to identify the key component of the active site that can influence the binding of the ligand. The interaction generating approach evaluates the active sites for acceptors, hydrophobes, and donors using an input receptor and a predetermined active site [10-12]. An interaction map is the calculation's output. The density of the vectors in the hydrogen bond interaction site is specified by the density of polar site parameter. The density of points in the interaction site for lipophilic atoms is specified by the density of lipophilic atoms parameter [13, 14].

ADMET

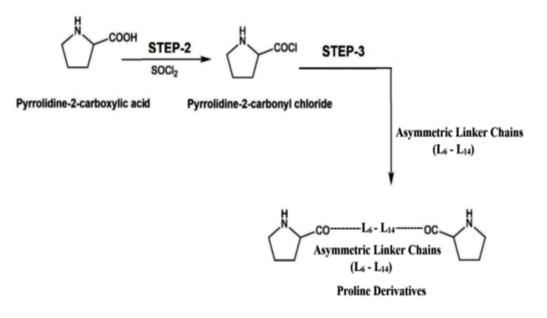
MOE offers techniques for evaluating an organism's ligand's disposition and potential toxicity. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) protocols offer published models that you can use to compute and analyse ADMET parameters [15]. In addition, you can use particular rules based on the presence or absence and frequency of particular chemical groups to eliminate ligands that are not likely drug-like, unsuitable leads, etc. [16].


ADMET - Human Intestinal Absorption

After oral delivery, this model forecasts human intestinal absorption (HIA). In contrast to blood-brain penetration, intestinal absorption is measured as a percentage of the substance ingested rather than as a ratio of concentrations. A substance is considered well-absorbed if at least 90% of it enters a person's bloodstream [17].

The ellipses outline areas where it is anticipated to find well absorbed compounds: The 95% ellipse is predicted to contain 95% of well absorbed compounds, and the 99% ellipse should contain 99% of well absorbed compounds. Keep in mind that the location of any given component does not always indicate how well, moderately, or poorly it will be absorbed. However, absorption typically decreases rather quickly outside the 95% ellipse [18].

MATERIALS AND METHODS:


Scheme-I Synthesis of L-Proline Derivatives with Symmetric Linker Chains

SYMMETRIC LINKER CHAINS (L1 to L5)

- $L_1 = Urea$
- $L_2 = Ethylenediamine$
- $L_3 = Malonamide$
- $L_4 = N$ -(Aminoacetyl) glycinamide
- $L_5 = N, N$ -Bis-(2-aminoacetyl) ethylene diamine

Scheme-II Synthesis of L-proline derivatives with asymmetric linker chains

ASYMMETRIC LINKER CHAINS (L6 to L14)

L_6	=	Glycinamide
L_7	=	2-(N-Ureido)acetamide
L_8	=	N_1 -(2-Acetamido)glycinamide
L9	=	N_1 -(2-Aminoethyl)glycinamide
L ₁₀	=	Malamide
L11	=	N ₁ N'-Bis(2-aminoethyl)malamide
L ₁₂	=	4-Aminobenzamide
L ₁₃	=	4-Amino-N-(2-aminoethyl)benzamide
L_{14}	=	4-Amino-N-(2-acetamido)benzamide

Spectral analysis:

Spectral data of *N*, *N'*-(1-oxoethane-1,2diyl)dipyrrolidine-carboxamide (IVL₆)

IR (**KBr, cm⁻¹**): 3418.0 (N-H Pyrrolidine), 3180.0 (CONH 2⁰ amide), 2924.0 (C-H pyrrolidine), 1767 (C=O amide keto).

¹**H NMR** Spectrum (DMSO, δppm): δ =2.0 (m, 1H, 2⁰ amide), 2.80 (2H, -CH₂, pyrrolidine), 1.96 (2H, -CH₂, pyrrolidine), 1.64 (2H, -CH₂, Pyrrolidine), δ =3.69 (t, 1H, CH, pyrrolidine), 8.03 (t, 1H, -NH, 2⁰ amide), 10.0 (s, 1H, -NH, imide), 4.09 (s, 2H, CH₂).

Mass Spectrum (ESI, Positive) of the compound recorded its molecular ion, $[M^+]$ at m/z 268 equal to its mass (Mol. Wt).

Spectral data of *N*, *N*'-[iminobis (2oxoethane-2, 1-diyl)]dipyrrolidine-2-carboxamide (IIIL₄)

IR (**KBr, cm⁻¹**): 3461.0 (N-H Pyrrolidine), 3081.0 (CONH 2⁰ amide), 2920.0 (C-H pyrrolidine), 1719 (C=O amide keto).

¹**H NMR** Spectrum (DMSO, δppm): δ =2.0 (m, 1H, 2⁰ amide), 2.80 (2H, -CH₂, pyrrolidine), 1.96 (2H, -CH₂, pyrrolidine), 1.64 (2H, -CH₂, pyrrolidine), δ =3.69 (t, 1H, CH, pyrrolidine), 8.03 (t, 1H, -NH, 2⁰ amide), 10.0 (s, 1H, -NH, imide), 4.09 (s, 2H, CH₂).

Mass Spectrum (ESI, Positive) of the compound has recorded its molecular ion: $[M^+]$ at m/z 325 equal to its mass (Mol. Wt).

RESULTS **Docking Studies:**

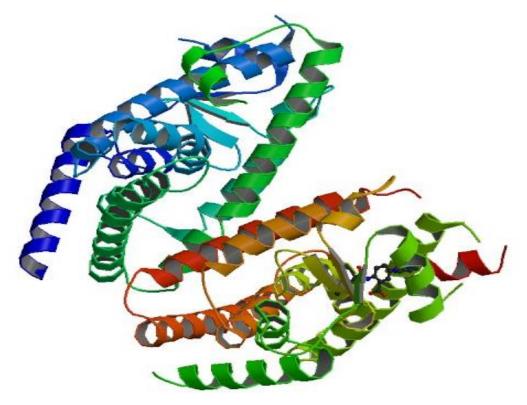


Figure 1. Crystal structure of the human DNA topoisomerase (PDB ID: 1T8I)

Table 1.	Physical	data of	f Scheme-I	compounds
1 4010 1.	1 Ilysical	uutu O	beneficine i	compounds

Compounds	Linker Chain	Molecular formula	Molecular weight	IUPAC name
$IIIL_1$	-NHCONH-	$C_{11}H_{18}N_4O_3$	254.23504	<i>N</i> -[(pyrrolidin-2-ylcarbonyl) carbamoyl] pyrrolidine-2- carboxamide
IIIL ₂	-NHCH2CH2NH-	$C_{12}H_{22}N_4O_2$	254.37801	<i>N</i> , <i>N</i> '-ethane-1,2-diyldipyrrolidine- carboxamide
IIIL ₃	-NHCOCH2CONH-	$C_{13}H_{20}N_4O_4$	296.3255032	<i>N</i> , <i>N</i> '-bis (pyrrolidin-ylcarbonyl) propanediamide
IIIL ₄	-NHCH2CONHCOCH2NH-	$C_{13}H_{20}N_4O_4$	296.33444	<i>N</i> , <i>N</i> -[iminobis (2-oxoethane-2, 1- diyl)] dipyrrolidine-2-carboxamide
IIIL5	-NHCH2CONHCH2CH2NHCOCH2NH-	$C_{16}H_{28}N_6O_4$	368.4311	N,N'-((ethane-1,2-diylbis(bis(2- oxoethane-2,1-diyl)) bis (pyrrolidine-2-carboxamide

Saarangi Ramesh et al

Compounds	Linker Chain	Molecular formula	Molecular weight	IUPAC name
IVL ₆	-NHCH2CONH-	$C_{12}H_{20}N_4O_3$	268.33504	<i>N</i> , <i>N</i> '-(1-oxoethane-1,2diyl) dipyrrolidine-carboxamide
IVL ₇	-NHCH2CONHCH2CONH-	C15H27N5O4	325.4801	N-[2-oxo-2-({2-oxo-2-[(pyrrolidin- 2-ylcarbonyl) amino] ethyl} amino) ethyl]pyrrolidine-2- carboxamide
IVL ₈	-NHCONHCH2CONH-	$C_{13}H_{21}N_5O_4$	311.3255032	N-({2-oxo-2-[(pyrrolidin-2- ylcarbonyl) amino] ethyl} carbamoyl) pyrrolidine-2- carboxamide
IVL9	-NHCH2CONHC H2CH2NH-	$C_{14}H_{25}N_5O_3$	311.33444	oxo[(pyrrolidin-2-ylcarbonyl) amino]ethyl}amino) ethyl] pyrrolidine-2- carboxamide
IVL ₁₀	- NHCO(CH ₂) ₂ OHCONH	$C_{16}H_{30}N_4O_3$	326.4311	2-hydroxy-N, N'-bis (pyrrolidin-2- ylcarbonyl) butanediamide
IVL ₁₁	- NH(CH ₂) ₂ NHCOCHOHCH ₂ CONH(C H ₂) ₂ NH-	$C_{18}H_{32}N_4O_5$	412.58198	2-hydroxy-N ¹ , N ⁴ -bis(2- (pyrrolidine-2-carboxamido) ethyl) succinamide
IVL ₁₂	-NHArCONH-	$C_{17}H_{22}N_4O_3$	330.3554	<i>N</i> -({4-[(pyrrolidin-2-ylcarbonyl) amino] phenyl} carbonyl) pyrrolidine-2-carboxamide
IVL ₁₃	-NHArCONH(CH ₂) ₂ NH	$C_{19}H_{27}N_5O_3$	373.40046	N-(2-(4-(pyrrolidine-2- carboxamido) benzamide) ethyl) pyrrolidine-2-carboxamide
IVL ₁₄	-NHArCONHCH2CONH-	$C_{19}H_{25}N_4O_4$	387.458632	N-(4-((2-oxo-2-(pyrrolidine-2- carboxamido) ethyl) carbamoyl) phenyl) pyrrolidine-2-carboxamide

Table 2. Physical data of Scheme-II compounds

Activity Tables

Name	Electrosta ticenergy	Van der waals energy	Lib Dock score	Interacting amino acids	Interacting atoms	H-bond distance
IIIL ₁	4.411	4.306	-8.9475	LEU98 LYS106LEU204, Leu204, Tyr156 Glu155.Ala103, Ala145	B11:H24 - A: LEU98:O: B11:H25- A: LEU204:HD11B9:H29 - A: LYS106:HZ2	1.458000
IIIL ₂	10.39	4.471	-8.1289	LYS231, ALA238, ASP234, LYS248, LEU349	B12:H24 - A: LEU98:C B12:H26 - A: LEU204:HD12B12:H28 A: LYS108:HZ3	5 -
IIIL ₃	4.419	3.376	-7.6394	LEU98 LYS105LEU207, Leu204, Tyr156 Glu155.Ala103, Ala145	A1:H25 - A: LEU98:O A1:H25 - A: LEU98:C A1:H31 - A: LYS105:C A1:H31 - A: LYS105:HI A1:H31 - A: LYS105:HI	: D D1 D3
IIIL4	11.81	3.427	-11.5501	LEU98 LYS105LEU207, Leu204, Tyr156 Glu155.Ala103, Ala145	A2:H25 - A: LEU98:O A2:H25 - A: LEU98:C A2:H31 - A: LYS105:C A2:H31 - A: LYS105:HI A2:H31 - A: LYS105:HI	: D D2 D3
IIIL5	4.377	4.324	-10.9808	LEU98 LYS105LEU207, Leu204, Tyr156 Glu155.Ala103, <u>Ala145</u>	A3:H25 - A: LEU98:O A3:H25 - A: LEU98:C A3:H31 - A: LYS105:CI A3:H31 - A: LYS105:HI A3:H31 - A:	: D:
Name	Electrostat		y of docking	Interacting	ompounds (IIIL ₆ to IIIL ₁₄) Interacting atoms	H-bond distance
	icenergy	energy	score	amino acids		
IVL ₆	4.319	4.367	-12.8472	LEU98 LYS105 LEU207, Leu204, Tyr156 Glu155.Ala103, Ala145	A2:H25 - A: LEU98:O: A2:H25 - A: LEU98:C: A2:H31 - A: LYS105:CD A2:H31 - A: LYS105:HD1 A2:H31 - A: LYS105:HD3	1.725000
IVL7	11.81	3.437	-10.8318	LEU98 LYS104LEU207, Leu204, Tyr156 Glu155.Ala103, Ala145	A3:H25 - A: LEU83:O: A3:H25 - A: LEU84:C A3:H31 - A: LYS104:CD A3:H31 - A: LYS104:HD2A3:H32 - A: LYS105:HD1	1.536000

Table 3. Summary of docking studies of Scheme-I compounds (IIIL₁ to IIIL₅)

IAJPS 2023, 10 (08), 226-237 Saarangi Ramesh *et al*

ISSN 2349-7750

IVL ₈	4.329	3.268	-10.7508	LEU98	A4:H25 - A: LEU98:O:	1.614000
11120	1.52)	5.200	10.7500	LYS108LEU207,	A4:H25 - A: LEU97:C	1.01 1000
				Leu204, Tyr156	A4:H32 - A: LYS108:CD	
				Glu155.Ala103,	A4:H32 - A:	
				Ala145	LYS104:HD2A4:H32 -	
					A: LYS108:HD3	
IVL ₉	4.429	4.702	-9.1867	LEU98	A5:H27 - A: LEU97:O	1.584000
-				LYS108LEU207,	A5:H28 - A: LEU96:C	
				Leu204, Tyr156	A5:H32 - A:	
				Glu155.Ala103,	LYS108:CD: A5:H32 -	
				Ala145	A: LYS104:HD3A5:H32	
					- A: LYS104:HD3	
IVL ₁₀	11.83	3.472	-8.5462	LEU99	A2:H24 - A: LEU99:O	1.637000
				LYS104	A2:H26 - A: LEU99:C	
				LEU207,	A3:H32 - A:	
				Leu204, Tyr156	LYS104:CD: A3:H32 -	
				Glu155.Ala103,	A: LYS106:HD3	
				Ala145	A3:H32 - A:	
					LYS104:HD3	
IVL ₁₁	4.339	4.483	-9.0780	LEU98	A4:H24 - A: LEU98:O:	1.356000
				LYS105LEU207,	A4:H28 - A: LEU98:C:	
				Leu204, Tyr156	A4:H33 - A: LYS105:CD	
				Glu155.Ala103,	A6:H32 - A:	
				Ala145	LYS108:HD3A6:H32 -	
					A: LYS108:HD3	
IVL ₁₂	3.429	4.463	-8.9076	LEU97	A6:H25 - A: LEU98:O:	1.642000
				LYS104LEU207,	A6:H24 - A: LEU97:C	
				Leu204, Tyr156	A7:H31 - A:	
				Glu155.Ala103,	LYS104:CD: A7:H32 -	
				Ala145	A: LYS104:HD2	
					A7:H32 - A:	
	10 50	2.102	10.0.525	L FLIGG	LYS108:HD3	1 50 5000
IVL ₁₃	10.78	3.402	-10.0633	LEU98	A2:H28 - A: LEU98:O:	1.736000
				LYS105	A2:H28 - A: LEU97:C	
				LEU207,	A2:H31 - A: LYS105:CD	
				Leu204, Tyr156	A3:H33 - A:	
				Glu155.Ala103, Ala145	LYS108:HD2A3:H33 -	
IVI	2 102	2 2070	0.6100		A: LYS104:HD3	1.532000
IVL ₁₄	3.483	3.2070	-9.6120	LEU98 LYS104LEU207,	A2:H24 - A: LEU83:O: A2:H25 - A: LEU85:C	1.332000
				L Y S104 LEU 207, Leu 204, Tyr 156	A2:H25 - A: LE085:C A2:H33 - A: LYS104:CD	
				Glu155.Ala103,	A2:H33 - A: L15104:CD A2:H33 - A:	
				Ala145	A2:H33 - A: LYS108:HD2	
				Ala145	A2:H33 - A:	
					LYS108:HD3	
				1	L13100.ПD3	

IAJPS 2023, 10 (08), 226-237

Saarangi Ramesh et al

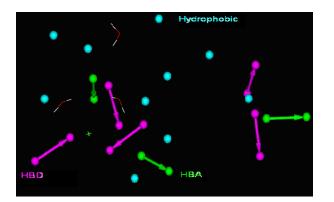


Figure 2. Centre point of cluster feature compound IVL_6 with

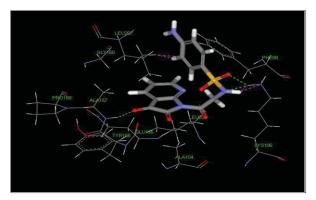


Figure 3. Hydrogen bond interactions of Human DNA Topoisomerase-I enzyme

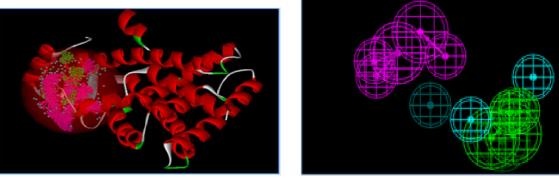
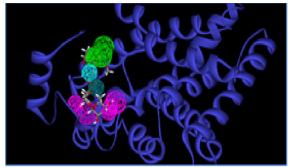



Figure 4. Cluster Feature of Interaction Generation Figure 5. Pharmacophore Features H-Bond Acceptor Green), H- Bond Donor (Pink), Blue (Hydrophobic)

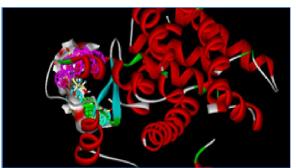


Figure 6. Visualization of IVL₆ Molecule with Figure 7. Visualization of IIIL₄ Molecule with Pharmacophore Features and Receptor Molecule is features and receptor Molecule Shows in Solid Ribbon Mode is Shows in Solid ribbon model

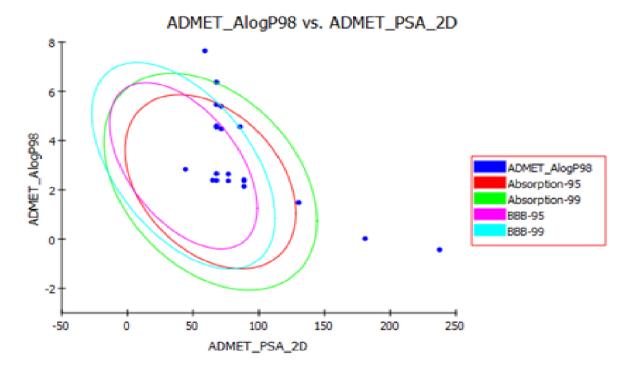


Figure 8. All ligand molecules are having good drug likeliness properties and all molecules with in the boundary limit

Table 5. Predicted fit valu	es of compounds from	the common feature-	based hypothesis	(Hypothesis-I)
	1		¥ 1	· • I /

Name	Fit value	PharmPrint
IIIL ₁	4.023	'1111'
IIIL ₂	4.023	'1111'
IIIL ₃	3.365	'1111'
IIIL ₄	4.563	'1111'
IIIL ₅	3.837	'1111'
IVL ₆	5.533	'1111'
IVL ₇	3.539	'1111'
IVL ₈	3.423	'1111'
IVL ₉	1.473	'1111'
IVL ₁₀	3.339	'1111'
IVL ₁₁	3.353	'1111'
IVL ₁₂	3.837	'1111'
IVL ₁₃	2.467	'1111'
IVL ₁₄	1.487	'1111'

Table 6. The predicted fit values of compounds from the structure-based pharmacophore model of human	
Topoisomerase-I	

Name	Acceptor 13	Acceptor	Donor	Donor	Fit	Hydrophobe 10	Hydrophobe 24	PharmPrint
		9	28	49	value			
$IIIL_1$	0	1	0	0	1.837	1	1	' 011011 '
IIIL ₂	0	0	1	1	1.387	0	0	ʻ101011'
IIIL ₃	1	0	0	1	1.637	1	1	ʻ101011'
IIIL ₄	1	0	0	1	1.876	0	0	'011011'
IIIL ₅	1	0	0	1	1.795	0	0	'011011'
IVL ₆	1	1	1	1	1.938	1	1	'011011'
IVL ₇	1	0	0	1	0.763	0	1	'011011'
IVL ₈	1	0	0	1	0.837	1	0	'011110'
IVL ₉	0	0	1	1	1.738	1	1	' 001111 '
IVL ₁₀	1	1	1	1	1.837	1	1	' 001111 '
IVL ₁₁	1	1	1	1	0.039	1	1	'011110'
IVL ₁₂	1	1	1	1	1.837	1	1	'011110'
IVL ₁₃	1	0	1	1	0.398	1	1	<i>'001111'</i>
IVL ₁₄	1	1	1	1	1.837	1	1	' 001100 '

Table 7. Predicted ADMET properties of the compounds

Name	BBB	Absorption	Solubility	Hepatotoxicity	CYP2D6	PPB
IIIL ₁	2	0	2	0	1	0
IIIL ₂	2	1	1	0	1	0
IIIL ₃	4	1	0	1	1	0
$IIIL_4$	4	1	0	0	1	2
IIIL ₅	2	0	1	0	1	0
IVL ₆	4	0	2	0	1	2
IVL ₇	2	1	1	0	1	0
IVL ₈	2	1	1	1	1	0
IVL ₉	3	1	2	0	1	2
IVL ₁₀	2	1	1	0	1	0
IVL ₁₁	2	1	2	1	1	2
IVL ₁₂	2	1	1	0	1	0
IVL ₁₃	2	1	0	1	1	0
IVL ₁₄	3	1	1	0	1	0

CONCLUSION:

Through docking investigations, the synthesised Lproline derivatives are tested in the present work for their anticancer potential against the targeted protein Topo isomerase-I. The docking results assessed the critical and particular interactions, which are important for characterising the affinity of these ligand molecules for the protein. Additionally, the results of the pharmacophore studies conducted identified the crucial chemical properties of the ligand and structural characteristics of the protein involved in the binding of the protein-ligand complex. Furthermore, these molecules have trustworthy ADMET characteristics. Together, the findings demonstrate that finding the most effective anticancer agents may be aided by the inhibitory activity of L-proline derivatives against Topo isomerase-I.

REFERENCES:

 Bray F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA - Cancer J. Clin. 68, 394–424 (2018).

- Bart L. Staker. et al. Structures of three classes of anticancer agents bound to the Human Topoisomerase I – DNA covalent complex. Journal of Medicinal Chemistry. 48, 2336-2345 (2005).
- Tim R. Blower. et al. Crystal structure and stability of gyrase fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences. 113, 1706-1713 (2016).
- Matthew R. Redinbo. et al. Crystal structures of Human Topoisomerase I in Covalent and Noncovalent complexes with DNA. Science. 279, 1504-1513 (1998).
- 5. Morris G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry. 30, 2785-2791 (2009).
- 6. Koji Ogata. et al. Lead generation and optimization based on Protein-Ligand Complementarity. Molecules. 15, 4382-4400 (2010).
- Alexander D. Wade and David J. Huggins. Optimization of Protein-Ligand Electrostatic interactions using an Alchemical Free Energy method. J. Chem. Theory Comput. 15, 6504-6512 (2019).
- 8. Hahnbeom Park. et al. Force Field Optimization guided by small molecule crystal lattice data enables consistent Sub-Angstrom Protein-Ligand Docking. J. Chem. Theory Comput. 17, 2000-2010 (2021).
- Sabine Schultes. et al. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discovery Today: Technologies. 7, 157-162 (2010).
- Raquel Dias, Walter Filgueira de Azevedo Jr. Molecular docking algorithms. Curr Drug Targets. 9, 1040-1047 (2008).
- Pedro H. M. Torres. et al. Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences. 20, 4574-4602 (2019).
- Natasja Brooijmans and Irwin D. Kuntz. Molecular Recognition and Docking Algorithms. Annual Review of Biophysics and Biomolecular Structure. 32, 335-373 (2003).
- 13. Saba Munawar. et al. Molecular docking guided Grid-Independent Descriptor analysis to probe the impact of water molecules on

Conformational Changes of hERG inhibitors in Drug Trapping Phenomenon. International Journal of Molecular Sciences. 20, 3385-3412 (2019).

- Kirk E. Hevener. et al. Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. J Chem Inf Model. 49, 444-460 (2009).
- 15. Sriram Sankararaman. et al. Active site prediction using evolutionary and structural information. Bioinformatics. 26, 617-624 (2010).
- Lukas Jendele. et al. Prankweb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research. 47, 345-349 (2019).
- 17. Mohammad Asif. Pharmacological Potential of Benzamide Analogues and their Uses in Medicinal Chemistry. Modern Chemistry and Applications, 4, 1-10 (2016).
- V. D. B Bonifacio. Proline Derivatives in Organic Synthesis. Org. Chem. Highlights. (2007).