

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187 https://doi.org/10.5281/zenodo.8434607

Available online at: <u>http://www.iajps.com</u>

Research Article

A VALIDATED REVERSE PHASE-HPLC-PDA METHOD AND OPTIMIZATION OF METHOD AND ITS VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF SULFADOXINE AND PYRIMETHAMINE IN PURE AND PHARMACEUTICAL DOSAGE FORM

BOTTA SUPRIYA¹*, K.CHAITANYA PRASAD², B.SUDHAKAR³, R.MOUNIKA⁴ ¹DEPARTMENT OF PHARMACEUTICAL ANALYSIS, SAMSKRUTI COLLEGE OF PHARMACY IN GHATKESAR, TELANGANA. 501301.

Article Received: July 2023Accepted: August 2023Published: September 2023

Abstract:

A new, simple and accurate, precise RP-HPLC method was developed for simultaneous determination of Sulfadoxine and Pyrimethamine in bulk and in combined pharmaceutical dosage form. The separation of Sulfadoxine and Pyrimethamine was achieved within 8 minutes on an Agilent Zorbax (C18) (150mm x 4.6mm, 5µm) column using Methanol: Acetate Buffer pH-3.8 (24:76v/v) as the mobile phase. Detection was carried out using wavelength at 262nm. The method showed adequate sensitivity concerning linearity, accuracy and precision over the range 100-500µg/ml and 30-70µg/ml for Sulfadoxine and Pyrimethamine, respectively. Careful validation proved advantages of high sensitivity, accuracy, precision, selectivity, robust and suitability for quality control laboratories. The developed method was robust as the %RSD was within the range and without effecting system suitability parameters. The proposed method is suitable for simultaneous determination of Sulfadoxine and Pyrimethamine in bulk and pharmaceutical dosage form.

Keywords: Sulfadoxine and Pyrimethamine, RP-HPLC, Validation, Precision, Robustness.

Corresponding author:

Botta Supriya,

Department of Pharmaceutical Analysis, Samskruti college of pharmacy, Ghatkesar, Telangana. Email Id- <u>mailmesupriya22@gmail.com</u>

Please cite this article in press Botta Supriya et al, A Validated Reverse Phase-HPLC-PDA Method And Optimization Of Method And Its Validation For The Simultaneous Estimation Of Sulfadoxine And Pyrimethamine In Pure And Pharmaceutical Dosage Form, Indo Am. J. P. Sci, 2023; 10 (09).

INTRODUCTION:

Chromatography is a laboratory technique for the separation of a mixture. The mixture is dissolved in a fluid called the *mobile phase*, which carries it through a structure holding another material called the *stationary phase*. The various constituents of the mixture travel at different speeds, causing them to separate. The separation is based on differential partitioning between the mobile and stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.[1]

Chromatography may be preparative or analytical. The purpose of preparative chromatography is to separate the components of a mixture for later use, and is thus a form of purification. Analytical chromatography is done normally with smaller amounts of material and is for establishing the presence or measuring the relative proportions of analytes in a mixture. The two are not mutually exclusive.[2]

Chromatography is based on the principle where molecules in mixture applied onto the surface or into the solid, and fluid stationary phase (stable phase) is separating from each other while moving with the aid of a mobile phase. The factors effective on this separation process include molecular characteristics related to adsorption (liquid-solid), partition (liquidsolid), and affinity or differences among their molecular weights [1, 2]. Because of these differences, some components of the mixture stay longer in the stationary phase, and they move slowly in the chromatography system, while others pass rapidly into mobile phase, and leave the system faster [3].

Based on this approach three components form the basis of the chromatography technique.

- Stationary phase: This phase is always composed of a "solid" phase or "a layer of a liquid adsorbed on the surface a solid support".
- Mobile phase: This phase is always composed of "liquid" or a "gaseous component."
- Separated molecules

The type of interaction between stationary phase, mobile phase, and substances contained in the mixture is the basic component effective on separation of molecules from each other. Chromatography methods based on partition are very effective on separation, and identification of small molecules as amino acids, carbohydrates, and fatty acids. However, affinity chromatographies (ie. ionexchange chromatography) are more effective in the separation of macromolecules as nucleic acids, and proteins. Paper chromatography is used in the separation of proteins, and in studies related to protein synthesis; gas-liquid chromatography is utilized in the separation of alcohol, esther, lipid, and amino groups, and observation of enzymatic interactions, while molecular-sieve chromatography is employed especially for the determination of molecular weights of proteins. Agarose-gel chromatography is used for the purification of RNA, DNA particles, and viruses [4].

Stationary phase in chromatography, is a solid phase or a liquid phase coated on the surface of a solid phase. Mobile phase flowing over the stationary phase is a gaseous or liquid phase. If mobile phase is liquid it is termed as liquid chromatography (LC), and if it is gas then it is called gas chromatography (GC). Gas chromatography is applied for gases, and mixtures of volatile liquids, and solid material. Liquid chromatography is used especially for thermal unstable, and non-volatile samples [5].

The purpose of applying chromatography which is used as a method of quantitative analysis apart from its separation, is to achive a satisfactory separation within suitable timeinterval. а Various chromatography methods have been developed to that end. Some of them include column chromatography, thin-laver chromatography (TLC). paper chromatography, gas chromatography, ion exchange chromatography, gel permeation chromatography, high-pressure liquid chromatography, and affinity chromatography [6].

- Column chromatography
- Ion-exchange chromatography
- Gel-permeation (molecular sieve) chromatography
- Affinity chromatography
- Paper chromatography
- Thin-layer chromatography
- Gas chromatography
- Dye-ligand chromatography
- Hydrophobic interaction chromatography
- Pseudoaffinity chromatography
- High-pressure liquid chromatography (HPLC)

High-prssure liquid chromatography (HPLC):

Using this chromatography technique it is possible to perform structural, and functional analysis, and purification of many molecules within a short time, This technique yields perfect results in the separation, and identification of amino acids, carbohydrates, lipids, nucleic acids, proteins, steroids, and other biologically active molecules, In HPLC, mobile phase passes through columns under 10-400atmospheric pressure, and with a high (0.1–5 cm//sec) flow rate. In this technique, use of small particles, and application of high presure on the rate of solvent flow increases separation power, of HPLC and the analysis is completed within a short time.

Essential components of a HPLC device are solvent depot, high- pressure pump, commercially prepared column, detector, and recorder. Duration of separation is controlled

Essential components of a HPLC device are solvent depot, high- pressure pump, commercially prepared column, detector, and recorder. Duration of separation is controlled with the aid of a computerized system, and material is accrued [25].

MATERIALS AND METHODS:

Sulfadoxine from Sura labs, Pyrimethamine from Sura labs, Water and Methanol for HPLC from LICHROSOLV (MERCK). Acetonitrile for HPLC from Merck, Phosphate buffer from Sura labs.

Hplc method development: TRAILS

Preparation of standard solution:

Accurately weigh and transfer 10 mg of Sulfadoxine and Pyrimethamine working standard into a 10ml of clean dry volumetric flasks add about 7ml of Methanol and sonicate to dissolve and removal of air completely and make volume up to the mark with the same Methanol.

Further pipette 3ml of Sulfadoxine and 0.5ml of Pyrimethamine from the above stock solutions into a 10ml volumetric flask and dilute up to the mark with diluents.

Procedure:

Inject the samples by changing the chromatographic conditions and record the chromatograms, note the

conditions of proper peak elution for performing validation parameters as per ICH guidelines.

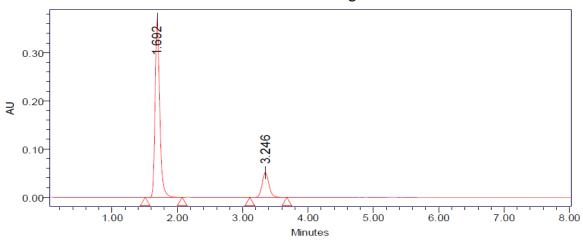
Optimized chromatographic conditions:

Instrument used : Waters HPLC with auto sampler and PDA Detector 996 model. Temperature : 37°C Column Agilent Zorbax (C18) : (150mm x 4.6mm, 5µm) column Mobile phase Methanol: Acetate Buffer pH-3.8 (24:76v/v) Flow rate 1ml/min : Wavelength 262nm : Injection volume : 10 µl Run time 8 min

Validation:

Preparation of mobile phase: Preparation of mobile phase:

Accurately measured 240 ml (24%) of Methanol and 760 ml of Acetate Buffer (76%) a were mixed and degassed in digital ultra sonicater for 15 minutes and then filtered through 0.45 μ filter under vacuum filtration.


Diluent Preparation:

The Mobile phase was used as the diluent.

RESULTS AND DISCUSSION

Optimized Chromatogram (Standard)								
Instrument used : Waters HPLC with auto								
sampler and PDA Detector	or 996 mc	odel.						
Temperature :	37°C							
Column :	Agi	lent Zorbax (C18)						
(150mm x 4.6mm, 5µm) o	column							
Mobile phase	:	Methanol:						
Acetate Buffer pH-3.8 (24	4:76v/v)							
Flow rate	:	1ml/min						
Wavelength	:	262nm						
Injection volume	:	10 µl						
Run time	:	6 min						

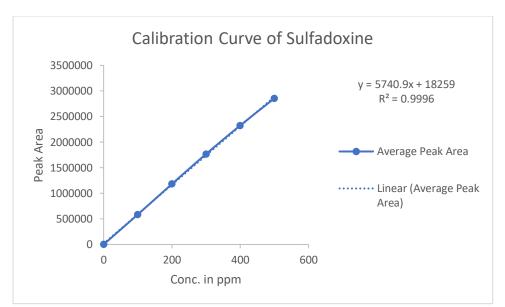
Auto-Scaled Chromatogram

Fig 1: Optimized Chromatogram Table 1: Observation of Optimized Chromatogram

S.No.	Peak Name	Retention Time	Area	Height	USP Tailing	USP Plate Count	USP Resolution
1	Sulfadoxine	1.692	1658785	385669	1.69	7586	10.85
2	Pyrimethamine	3.246	425631	65245	1.58	6235	

Assay (Sample):

S.No	Peak Name	Retention Time (min)	Area	USP Plate Count	USP Tailing
1	Sulfadoxine	1.694	1668985	7659	1.72
2	Pyrimethamine	3.234	436598	6347	1.61


%ASSAY =

Sample area	Weight of standard	Dilution of sample	Purity	Weight of tablet	
×	>	<×	X	×1	00
Standard area	Dilution of standard	Weight of sample	100	Label claim	

The % purity of Tinidazole and Diloxanide in pharmaceutical dosage form was found to be 99.4 %.

Linearity: Chromatographic data for linearity study:

Chromatogram showing linearity level-5

S. No	Concentration Level (%)	Concentration µg/ml	Average Peak Area		
1.	Ι	100	585985		
2.	II	200	1182468		
3.	III	300	1768785		
4.	IV	400	2326852		
5.	V	500	2856874		
C	Correlation coefficient				

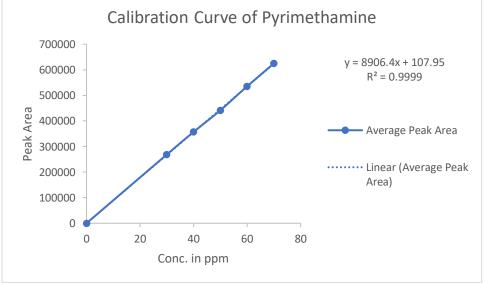


Fig 3: Calibration Curve for Pyrimethamine

S. No.	Concentration Level (%)	Concentration µg/ml	Average Peak Area
1	Ι	30	268764
2	II	40	356958
3	III	50	441631
4	IV	60	535186
5	V	70	624698
0	Correlation coefficient		0.999

The linearity range was found to be 100-500 and $30-70\mu$ g/ml for both Sulfadoxine and Pyrimethamine respectively. Calibration curve was plotted and correlated Co-efficient for both the drugs found to be 0.999. Hence the results obtained were within the limits. The linearity curves were shown in Figs: 52, 53.

Repeatability:

Observation of System Precision				
S. No	Sample Area 1	Sample Area 2		
1	1658254	426598		
2	1658952	426589		
3	1654857	426985		
4	1659854	426587		
5	1653298	426515		
Mean	1657043	426654.8		
Std.dev	2820.29	187.5692		
%RSD	0.1702	0.043963		

Acceptance Criteria:

In the precision study %RSD was fond to be less than 2%. For Sulfadoxine 0.17% and Pyrimethamine 0.04% which indicates that the system has good reproducibility.

For precision studies 5 replicated injections of Sulfadoxine and Pyrimethamine formulation was performed. %RSD was determined for peak areas of Sulfadoxine and Pyrimethamine.

The acceptance limits should be not more than 2% and the results were found to be within the acceptance limits. The chromatogram of precision was showed in Figs: 29-33 results were reported in Table: 35

Intermediate precision:

S. No.	Sample Area 1	Sample Area 2	
1	1665985	436598	
2	1662598	436855	
3	1668484	436598	
4	1664598	436587	
5	1663579	436741	
6	1664587	432659	
Mean	1664972	436006.3	
Std. Dev.	2060.327	1643.285	
% RSD	0.123745	0.376895	

Table-4: Observation of Robustness Day 1

Acceptance Criteria:

• %RSD of five different sample solutions should not more than 2.

Table 5: Observation of Tobustiless Day 2				
S. No.	Sample Area 1	Sample Area 2		
1	1648598	415985		
2	1642587	415267		
3	1649852	415986		
4	1648754	415265		
5	1645289	415874		
6	1647581	415632		
Mean	1647110	415668.2		
Std. Dev.	2699.291	337.2106		
% RSD	0.16388	0.081125		

Table 5: Observation of robustness Day 2

Acceptance Criteria:

• %RSD of five different sample solutions should not more than 2.

Accuracy:

Sulfadoxine

Table 6: Accuracy Observation of Sulfadoxine

%Concentration (at specification Level)	Average Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	879537	150	150.048	100.032	
100%	1743252	300	300.521	100.172	100.112%
150%	2609693	450	450.598	100.132	

Pyrimethamine:

Table 7: Accuracy Observation of Pyrimethamine

%Concentration (at specification Level)	Average Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery	
50%	224271	25	25.114	100.456%		
100%	445748.3	50	49.952	99.904%	100.16%	
150%	670006.3	75	75.101	100.134%		

Robustness

Table-8: System suitability results Sulfadoxine

Organic phase		System suitability Results			
		USP Plate	USP Tailing	Retention Time (min)	
Less organic phase	50:50	7269	1.61	1.868	
Actual organic phase	55:45	7586	1.69	1.688	
More organic phase	60:40	7496	1.64	1.675	

	14010 7.	System suitability res	~		
Organic phase		System suitability Results			
		USP Plate Count	USP Tailing	Retention Time (min)	
Less organic phase	50:50	6182	1.54	3.621	
Actual organic phase	55:45	6235	1.58	3.282	
More organic phase	60:40	6322	1.56	2.302	

 Table 9: System suitability result Pyrimethamine

Acceptance Criteria:

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

CONCLUSION:

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Sulfadoxine and Pyrimethamine was done by RP-HPLC. The separation was optimized with mobile phase consists of Methanol: acetate buffer (pH-3.8) mixed in the ratio of 24:76% v/v. An Agilent Zorbax (C18) (150mm x 4.6mm, 5µm) column or equivalent chemically bonded to porous silica particles were used as stationary phase. The solutions were chromatographed at a constant flow rate of 1.0 ml/min. The linearity range of Sulfadoxine and Pyrimethamine were found to be from 100-500µg/ml, 30-70µg/ml respectively. Linear regression coefficient was not more than 0.999, 0.999.

The values of % RSD are less than 2% indicating accuracy and precision of the method. The percentage recovery varies from 98-102% of Sulfadoxine and Pyrimethamine. LOD and LOQ were found to be within limits.

The results obtained on the validation parameters met ICH and USP requirements. It inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

Acknowledgement:

The Authors are thankful to the Management and Principal, Department of Pharmacy, Samskruti college of pharmacy in Ghatkesar, Telangana, for extending support to carry out the research work. Finally, the authors express their gratitude to the Sura Labs, Dilsukhnagar, Hyderabad, for providing research equipment and facilities.

REFERENCE:

- Berry RI, Nash AR. Pharmaceutical process validation, Analytical method validation, Marcel Dekker Inc. New work, 1993; 57:411-28
- Anthony C Moffat, M David Osselton, Brian Widdop. Clarke's analysis of drugs and poisons, Pharmaceutical press, London, 2004, P.1109-1110, 1601-1602.
- Klaus Florey, Analysis profile of drugs substances, Academic press, New York, 2005, P.406-435.
- 4. P.D. Sethi. HPLC: Quantitative analysis pharmaceutical formulations, CBS publishers and distributors, New Delhi (India), 2001, P.3-137.
- 5. Michael E, Schartz IS, Krull. Analytical method development and validation. 2004, P. 25-46.
- R. Snyder, J. Kirkland, L. Glajch. Practical HPLC method development, 2nd ed, A Wiley international publication, 1997, P.235, 266-268,351-353.653-600.686-695.
- 7. Basic education in analytical chemistry. Analytical science, 2001:17(1).
- 8. Method validation guidelines international Conference on harmonization; GENEVA; 1996.
- Sharma BK. Instrumental methods of chemical analysis, Introduction to analytical chemistry, 23th ed. Goel publishing house Meerut, 2004, P12-23.
- H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle. Instrumental methods of analysis, 7th edition, CBS publishers and distributors, New Delhi. 1986, P.518-521, 580-610.
- John Adamovies, Chromatographic analysis of pharmaceutical, Marcel Dekker Inc. New York, 2nd ed, P.74, 5-15.
- Gurdeep Chatwal, Sahm K. Anand. Instrumental methods of chemical analysis, 5th edition, Himalaya publishing house, New Delhi, 2002, P.1.1-1.8, 2.566-2.570
- D. A. Skoog. J. Holler, T.A. Nieman. Principle of instrumental analysis, 5th edition, Saunders college publishing, 1998, P.778-787.
- 14. Skoog, Holler, Nieman. Principals of instrument al analysis 5th ed, Harcourt Publishers international company, 2001, P.543-554.

IAJPS 2023, 10 (09), 146-154

- 15. William Kemp. Organic spectroscopy, Palgrave, New York, 2005, P.7-10, 328-330.
- 16. P.N. Arora, P.K. Malhan. Biostatistics, Himalaya publishers house, India, P.113,139-140,154.
- Doserge, Wilson and Gisvold's text book of organic medicinal and pharmaceutical chemistry, 8th ed, Lippincott Company, 1982, P.183-197.
- 18. https://www.drugbank.ca/drugs/DB01299
- 19. https://pubchem.ncbi.nlm.nih.gov/compound/Sul fadoxine
- 20. https://en.wikipedia.org/wiki/Sulfadoxine