

Available online at: <u>http://www.iajps.com</u>

Research Article

DEVELOPMENT AND VALIDATION OF A REVERSE PHASE HPLC METHOD FOR SIMULTANEOUS DETERMINATION OF CARBIDOPA AND LEVODOPA IN PHARMACEUTICAL DOSAGE FORMS

Kethavath Sujatha^{*}, Dr.Nihar Ranjan Das¹, Dr.K.Balaji¹

¹Department Of Pharmaceutical Analysis, Avanthi Institute Of Pharmaceutical Science ,Gunthapally (V), Hayathnagar (Mandal), Near Ramoji Film City, Ranga Reddy (Dist), Pincode : 501505

Abstract:

A new, simple, Accurate, precise, robust and rugged reverse phase-HPLC method was developed for the simultaneous estimation of the Levodopa and Carbidopa in pure and pharmaceutical dosage forms. Chromatogram was run through Hypersil C18 (250 mm×4.6 mm, 5µm) particle size. Mobile phase containing Potassium dihydrogen phosphate (0.03M) (pH-2.8): Methanol (75:25%) was pumped through column at a flow rate of 1.0ml/min. Temperature was maintained at Ambient. Optimized wavelength selected was 226 nm. Retention time of Levodopa and Carbidopa were found to be 1.693min and 3.235min \pm 0.02 respectively. The precision %RSD of the Levodopa and Carbidopa were and found to be 0.435 and 0.039 respectively. %Recovery was obtained as 100.06% and 100.083% for Levodopa and Carbidopa. The LOD and LOQ values were found to be for the Levodopa and Carbidopa are 1.27µg/ml, 1.16 µg/ml 3.81µg/ml, 3.48µg/ml and the proposed method was found to be simple, precise, accurate, rapid, economic and reproducible for the estimation of Levodopa and Carbidopa in pure form and pharmaceutical marketed formulation. **Keywords:** Levodopa and Carbidopa, HPLC, Method Development, Validation.

Corresponding author:

Kethavath Sujatha,

Department of Pharmaceutical Analysis, Avanthi Institute Of Pharmaceutical Science, Gunthapally (V), Hayathnagar (Mandal), Near Ramoji Film City, Ranga Reddy (Dist),Pincode : 501505. Email Id- sujathakethayath17ad@gmail.com

fPlease cite this article in press Kethavath Sujatha et al, Development And Validation Of A Reverse Phase Hplc Method For Simultaneous Determination Of Carbidopa And Levodopa In Pharmaceutical Dosage Forms Indo Am. J. P. Sci, 2023; 10 (10).

INTRODUCTION:

High Performance Liquid Chromatography

HPLC is a type of liquid chromatography that employs a liquid mobile phase and a very finely divided stationary phase. In order to obtain satisfactory flow rate liquid must be pressurized to a few thousands of pounds per square inch.

The rate of distribution of drugs between Stationary and mobile phase is controlled by diffusion process. If diffusion is minimized faster and effective separation can be achieved .The techniques of high performance liquid chromatography are so called because of its improved performance when compared to classical column chromatography advances in column chromatography into high speed, efficient ,accurate and highly resolved method of separation.

For the recent study metformin and Sitagliptin was selected for estimation of amount of analyte present in formulation and bulk drug. The HPLC method is selected in the field of analytical chemistry, since this method is specific, robust, linear, precise and accurate and the limit of detection is low and also it offers the following advantages

- Speed many analysis can be accomplished in 20min (or) less.
- Greater sensitivity(various detectors can be employed).
- Improved resolution(wide variety of stationary phases).
- Re usable columns(expensive columns but can be used for many analysis).
- Ideal for the substances of low viscosity.
- Easy sample recovery, handling and maintenance.
- Instrumentation leads itself to automation and quantification (less time and less labour).
- Precise and reproducible.
- Integrator itself does calculations.
- Suitable for preparative liquid chromatography on a much larger scale.

HPLC Basic Instrumentation:

HPLC components

The essential components of a complete HPLC system are solvent delivery system (Pump), detector, fixed volume injector loop or autosampler, solvent reservoirs, packed column, data system and recorder. A schematic of a simplified HPLC system is shown in above Figure.

Column

The column is probably the heart of HPLC system. The development of this column technology leads to the evolution of the HPLC instrumentation systems used today. The conventionally used HPLC columns are particle packed columns. The key of column selection when previous separation is not available resides in knowing the chemistry of the sample. Columns should never be dry. A dry column will eventually have voids because the packing will shrink away from the wall, which would result in band broadening. Before running a sample in HPLC the column should be equilibrated. Usually column equilibrium is achieved after passage of 10 - 20column volumes of the new mobile phase through the column. Insufficient column equilibrium usually leads to retention difference.

Pump

The solvent delivery system or as it is commonly called the pump includes two major types, constant volume or flow and constant pressure. Constant volume pumps are mechanically driven systems, most commonly using screw driven syringes or reciprocating pistons. On the other hand, constant pressure pumps are driven or controlled by gas pressure.

Injector or Auto sampler

Samples are usually introduced by syringe injection via a manual injector into the mobile phase stream or by the use of an auto sampler. The important aspects in sample introduction are precise and reproducible injections. This is especially important with quantitative analysis where the reproducibility of the peak response is dependant on the precision of the sample introduction. Direct syringe injection through a manual injector was the first popular method of sample introduction. As

HPLC instrumentation evolved, many auto sampler techniques were applied so that sample introduction has become more precise and rapid.

Detector

HPLC detectors include ultraviolet-visible, fluorescence, electrochemical, refractometer, mass spectrometer and others. The UV visible absorption detector is the most widely used detector in liquid chromatography, since most organic compounds show some useful absorption in the UV region. This detector is fairly universal in application, although sensitivity depends on how strongly the sample absorbs light at a particular wavelength.

Solvent reservoir

Different containers are used as a solvent delivery system reservoir. The best material from which the containers are made is glass. Plastic containers are not recommended as it leads to plasticizer leaching. The container should be covered to prevent solvent evaporation. The tubing from the reservoir can be made of stainless steel or Teflon, and both are satisfactory.

Data handling and analysis

Data handling in HPLC is as important to the success of any experiment or analysis as any other components in the system. It is part of good HPLC techniques to properly label and document the analytical results. The advanced computer softwares used now in data handling and analysis allow easy recording and storage of all chromatographic data.

MATERIALS AND METHODS:

Carbidopa & Levodopa Procured from Sura labs, Water and Methanol for HPLC from LICHROSOLV (MERCK), Acetonitrile for HPLC from Merck, Triethylamine from Merck.

HPLC METHOD DEVELOPMENT: TRAILS

Preparation of standard solution:

Accurately weigh and transfer 10 mg of carbidopa and levodopa working standard into a 10ml of clean dry volumetric flasks add about 7ml of Methanol and sonicate to dissolve and removal of air completely and make volume up to the mark with the same Methanol. Further pipette 0.3ml of carbidopa and 1.98ml of levodopa from the above stock solutions into a 10ml volumetric flask and dilute up to the mark with Methanol.

Procedure:

Inject the samples by changing the chromatographic conditions and record the chromatograms, note the conditions of proper peak elution for performing validation parameters as per ICH guidelines.

Mobile Phase Optimization:

Initially the mobile phase tried was Methanol: Water and ACN: Water with varying proportions. Finally, the mobile phase was optimized to Acetonitrile and water in proportion 75:25 v/v respectively.

Optimization of Column:

The method was performed with various C18columns like Symmetry, X terra and ODS column. Phenomenex Gemini C18 (4.6×250 mm) 5 μ was found to be ideal as it gave good peak shape and resolution at 1ml/min flow.

OPTIMIZED	CHROMATOGRAPHIC		
CONDITIONS:			
Instrument used :	Waters	Alliance 2695	
HPLC with PDA Detector	or 996 mc	odel.	
Temperature	: 40°C		
Column :	Phenor	menex Gemini C18	
(4.6×250mm) 5µ			
Mobile phase	:	Acetonitrile and	
water (75:25% v/v)			
Flow rate	:	1ml/min	
Wavelength	:	240nm	
Injection volume :	10µ1		
Run time	:	6minutes	

VALIDATION

PREPARATION OF MOBILE PHASE: Preparation of mobile phase:

Accurately measured 750ml of Acetonitrile (75%) of and 250ml of HPLC Water (25%) were mixed and degassed in a digital ultrasonicater for 10 minutes and then filtered through 0.45 μ filter under vacuum filtration.

Diluent Preparation:

The Mobile phase was used as the diluent.

RESULTS AND DISCUSSION:

Mobile phase	: Potassium dihydrogen
phosphate (0.03M) (pH-	2.8): Methanol (75:25)
Auto sample temperatur	e : Ambient
Injection volume	: 20µL
Column	: Hypersil C18 (250 mm×4.6
mm, 5µm) particle size	
Detector wavelength	: 226 nm
Flow rate	: 1.0ml/min
Run time	: 6 minutes

Procedure: a

Inject 20μ L of standard, sample into chromatographic system and measure the areas for the Levodopa and Carbidopa peeks and calculate the % assay by using the formula.

Fig no: 12 Typical Chromatogram for optimized method Table-: Results of optimized method Chromatogram

S. No.	Name	Retention Time	Area	USP Resolution	USP Tailing	USP Plate Count
1	Levodopa	1.693	3658985		1.58	5698
2	Carbidopa	3.235	6529	7.28	1.63	7529

Observation: Peeks are well separated all the parameters are within the limits.

Table no: 10 Standard Results of Levodopa

S. no	Sample name	RT	Area	USP	USP
				plate count	tailing
1	Injection 1	1.694	3658986	5698	1.58
2	Injection 2	1.689	3659844	5655	1.59
3	Injection 3	1.692	3659864	5682	1.58
4	Injection 4	1.688	3654875	5674	1.58
5	Injection 5	1.688	3654514	5628	1.59
Avg.			3657617		
SD			2693.969		
% RSD			0.073654		

Table no: 11 Standard Results of Carbidopa

S. no	Sample name	RT	Area	USP plate	USP
				count	tailing
1.	Injection 1	3.244	6598	7598	1.63
2.	Injection 2	3.238	6574	7549	1.64
3.	Injection 3	3.246	6523	7561	1.63
4.	Injection 4	3.265	6539	7592	1.63
5.	Injection 5	3.265	6578	7569	1.64
Avg.			6562.4		
SD			30.59902		
% RSD			0.466278		

ACCURACY:

Table no: Accuracy (%recovery) results of Levodopa

S. no	Accuracy Level	Sample name	µg/ml added	μg/ml found	% Recovery	% Mean
		1	40	39.949	99.872	
1	50%	2	40	40.098	100.245	99.979%
		3	40	39.929	99.822	
		1	80	80.071	100.088	
		2	80	80.180	100.225	
2	100%	3	80	80.048	100.060	100.124%
		1	120	120.080	100.066	
3	150%	2	120	120.092	100.076	100.091%
		3	120	120.159	100.132	

Table no: Accuracy (%recovery) results of Carbidopa

S. no	Accuracy	Sample	μg/ml	μg/ml	% Recovery	% Mean
	Level	name	added	found		
		1	45	45.124	100.275	
		2	45	44.999	99.997	100.131%
1	50%	3	45	45.055	100.122	
		1	90	90.028	100.031	
		2	90	90.056	100.062	100.108%
2	100%	3	90	90.209	100.232	
		1	135	134.987	99.990	
		2	135	135.112	100.082	100.010%
3	150%	3	135	134.945	99.959	

LINEARITY

Table no: Linearity data for Levodopa

S.	Concentration	Rt	Area
no	(µg/ml)		
1.	40	1.689	1923835
2.	60	1.691	2899874
3.	80	1.692	3868985
4.	100	1.689	4835984
5.	120	1.688	5758747

Fig no: Linearity Curve of Levodopa

S. no	Concentration (µg/ml)	Rt	Area	
1.	50	3.203	3675	
2.	70	3.299	5108	
3.	90	3.294	6529	
4.	110	3.290	7954	
5.	130	3.288	9349	

Fig no: Linearity Curve of Carbidopa

Robustness

Parameter	Rt	Theoretical plates	Tailing factor
Decreased flow rate (0.8ml/min)	1.868	5854	1.56
Increased flow rate (1.2ml/min)	1.544	5365	1.57
Decreased temperature (20 ⁰ c)	1.731	5418	1.53
Increased temperature (30 ^o c)	1.675	5496	1.54

Table no: Robustness data for Carbidopa

Parameter	Rt	Theoretical plates	Tailing factor
Decreased flow rate (0.8ml/min)	3.621	7598	1.62
Increased flow rate(1.2ml/min)	2.998	7612	1.61
Decreased temperature (20 ⁰ c)	6.242	7251	1.64
Increased temperature (30 ^o c)	2.302	7195	1.61

PRECISION:

	Table 10. Trecision studies for Levodopa and Carbidopa							
S.	Intraday precision for Levodopa			Intraday precision for Carbidopa				
no	Peak area	Mean peak area	%RSD	Peak area	Mean peak area	%RSD		
1	3658952			6598				
2	3659854			6529				
3	3659874	3665965	0.435	6537	6547	0.390		
4	3658748			6538				
5	3698547			6546				
6	3659816			6534				

Table no: Precision studies for Levodopa and Carbidopa

SPECIFICITY:

Table no: Specificity data for Levodopa and Carbidopa

S. no	Sample name	Levodopa		Carbidopa	
		Area	Rt	Area	Rt
1	Standard	3658985	1.691	6529	3.299
2	Sample	3785984	1694	6695	3.234
3	Blank	-	-	-	-
4	Placebo	-	-	-	-

CONCLUSION:

In the present investigation, a simple, sensitive, precise and accurate RP-HPLC method was developed for the quantitative simultaneous estimation of Levodopa and Carbidopa in bulk drug and pharmaceutical dosage forms.

This method was simple, since diluted samples are directly used without any preliminary chemical derivatisation or purification steps.

Levodopa was found to be readily sol in dil. hydrochloric and formic acids; practically insoluble in ethanol, benzene, chloroform, ethyl acetate, soluble in water. Carbidopa was found to be slightly soluble in water, Soluble in 100% ethanol and in methanol, freely soluble in 3N HCl, very slightly soluble in ethanol (96 per cent), practically insoluble in methylene chloride. Potassium dihydrogen phosphate (0.03M) (pH-2.8): Methanol (75:25) was chosen as the mobile phase. The solvent system used in this method was economical.

The %RSD values were within 2 and the method was found to be precise.

The results expressed in Tables for RP-HPLC method was promising. The RP-HPLC method is more sensitive, accurate and precise compared to the Spectrophotometric methods.

This method can be used for the routine simultaneous

determination of Levodopa and Carbidopa in bulk drug and in Pharmaceutical dosage forms.

ACKNOWLEDGEMENT

The Authors are thankful to the Management and Principal, Department of Pharmacy, Avanthi Institute of Pharmacy, Ibrahimpatnam, for extending support to carry out the research work. Finally, the authors express their gratitude to the Sura Labs, Dilsukhnagar, Hyderabad, for providing research equipment and facilities.

BIBLIOGRAPHY:

- 1. Sharma BK. Instrumental methods of chemical analysis, Introduction to analytical chemistry, 23th ed .Goel publishing house meerut, 2004, P12-23.
- H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle. Instrumental methods of analysis, 7th edition, CBS publishers and distributors, New Delhi. 1986, P.518-521, 580-610.
- John Adamovies, Chromatographic analysis of pharmaceutical, Marcel Dekker Inc. New York, 2nd ed, P.74, 5-15.
- Gurdeep Chatwal, Sahm K. Anand. Instrumental methods of chemical analysis, 5th edition, Himalaya publishing house, New Delhi, 2002, P.1.1-1.8, 2.566-2.570
- D. A. Skoog. J. Holler, T.A. Nieman. Principle of instrumental analysis, 5th edition, Saunders college publishing, 1998, P.778-787.

- 6. Skoog, Holler, Nieman. Principals of instrumental analysis 5th ed, Harcourt publishers international company, 2001, P.543-554.
- 7. William Kemp. Organic spectroscopy, Palgrave, New York, 2005, P.7-10, 328-330
- 8. P.D. Sethi. HPLC: Quantitative analysis pharmaceutical formulations, CBS publishers and distributors, New Delhi (India), 2001, P.3-137.
- Michael E, Schartz IS, Krull. Analytical method development and validation. 2004, P. 25-46.
- R. Snyder, J. Kirkland, L. Glajch. Practical HPLC method development, 2nd ed, A Wiley international publication, 1997, P.235, 266-268,351-353.653-600.686-695.
- 11. Basic education in analytical chemistry. Analytical science, 2001:17(1).
- 12. Method validation guidelines international Conference on harmonization; GENEVA; 1996
- Berry RI, Nash AR. Pharmaceutical process validation, Analytical method validation, Marcel Dekker Inc. New work, 1993; 57:411-28
- Anthony C Moffat, M David Osselton, Brian Widdop. Clarke's analysis of drugs and poisons, Pharmaceutical press, London, 2004, P.1109-1110, 1601-1602.
- Klaus Florey, Analysis profile of drugs substances, Academic press, New York, 2005, P.406-435.
- 16. P.N. Arora, P.K. Malhan. Biostatistics, Himalaya publishers house, India, P.113, 139-140,154.
- Doserge, Wilson and Gisvold's text book of organic medicinal and pharmaceutical chemistry, 8th ed, Lippincott Company, 1982, P.183-197.