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Abstract:  

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder that is the leading cause of 

dementia. It is characterized by the accumulation of abnormal protein deposits in the brain, disrupting normal brain 

cell function. Symptoms develop slowly and worsen over time, including memory loss, difficulty with language and 

problem-solving, confusion, and changes in mood and personality. Researchers have proposed and implemented a 

hybrid framework that combines the Gray wolf optimization algorithm (GWO) and multiple discrete wavelets 

transform (DWTs) algorithms to achieve early detection using a support vector machine (SVM) and convolutional 

neural network (CNN). This framework involves several essential steps, including data acquisition, preprocessing, 

and image-to-signal transformation; feature extraction using four discrete wavelet transform systems (demy, semy, 

bior1, db8); feature selection through a Gray wolf optimization algorithm (GWO), and SVM-based classification and 

convolutional neural network (CNN). These steps are critical for developing accurate and reliable machine and deep-

learning models for Alzheimer’s disease detection. The study’s results demonstrate the effectiveness of the proposed 

system, achieving an average accuracy of 94.5% using a support vector machine and 95.4% using a convolutional 
neural network in detecting Alzheimer’s disease. The integration of machine learning and deep learning algorithms 

such as SVM, CNN, and Gray wolf optimization for feature selection significantly contributes to the model’s accuracy. 

This research emphasizes the importance of early detection of Alzheimer’s disease and showcases the machine's 

potential and deep learning techniques using brain magnetic resonance images (MRI) to accomplish this objective. 
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INTRODUCTION: 

Alzheimer’s disease (AD) is a common 

neurodegenerative disease associated with the 

accumulation and deposition of cerebral beta-amyloid, 

which impairs cognitive function. Memory loss, 
disorientation, and impairment of daily tasks are 

among the symptoms [1]. While it is an incurable 

disease, some therapies can help control symptoms 

and limit their course, such as medication, exercise, 

and social interaction. The ultimate objective of the 

disease’s study is to discover a cure, as it is a 

significant worldwide health concern [2]. The 

unpredictability of disease development, overlapping 

symptoms with other disorders, absence of a 

conclusive diagnostic test, difficulties recognizing the 

disease in its early stages, and restricted access to 

diagnostic equipment make it difficult to diagnose 
Alzheimer’s disease [3]. Despite these drawbacks, 

work on creating novel biomarkers and diagnostic 

instruments has advanced [3]. To get above these 

obstacles and enhance early and precise Alzheimer’s 

disease diagnosis, more research is required [4]. 

 

Detecting Alzheimer’s disease is challenging due to its 

complexity and the absence of definitive diagnostic 

tests [5]. Key challenges include overlapping 

symptoms with normal aging or other dementia types, 

the lack of specific biomarkers, late diagnosis at 
advanced stages, variability in progression, limited 

access to specialized facilities, and lack of awareness 

[3]. Addressing these challenges requires ongoing 

research for better diagnostic tools, raising awareness, 

and improving access to specialized facilities [6]. 

Early detection and intervention can potentially 

improve management and future therapeutic 

interventions for Alzheimer’s disease [7]. 

 

Early detection of Alzheimer’s disease is essential for 

planning future care, improving patient outcomes, 
furthering research, and participating in clinical trials 

[1]. Early identification lowers healthcare costs, 

permits prompt intervention and treatment, makes it 

easier to gather crucial data for research, and permits 

involvement in clinical trials for novel medications 

and treatments [8]. Various methods, including 

cognitive testing, brain imaging, bio-marker testing, 

genetic testing, and machine learning, are used to 

detect Alzheimer’s disease [9].  

 

The role of neuroimaging in Alzheimer's disease (AD) 

diagnosis is undergoing a paradigm shift. Traditionally 
employed to rule out other etiologies, it increasingly 

contributes to accurate disease identification, 

extending beyond its historical limitations to later 

stages (Figure 1) [10]. Recent advancements in 

neuroimaging modalities, encompassing both 

structural and functional Magnetic Resonance 

Imaging (MRI) and Positron Emission Tomography 

(PET) studies, unveil characteristic brain changes not 

only in symptomatic but also in prodromal and even 

presymptomatic phases of AD. This paves the way for 

earlier diagnosis and intervention, potentially 
revolutionizing our approach to this 

neurodegenerative disease [11, 12]. 

The chance of Alzheimer’s disease may also be 

predicted by deep learning and machine learning 

algorithms using vast data sets of medical history, 

demographic data, cognitive test results, and brain 

imaging data [13]. 

 

 

Figure 1. (A) Axial Fluid-attenuated inversion recovery (FLAIR) and (B) T1-weighted images of the patient 

with Alzheimer's disease demonstrate generalized cerebral volume loss; this is most pronounced in the 

hippocampi, which are symmetrically atrophied. There are multiple white matter hyperintensities in keeping 

with chronic small vessel ischemic white matter changes. 
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Detecting Alzheimer’s disease early is vital for timely 
intervention and treatment, allowing for symptom 

management and improved quality of life [14]. It 

enables planning, informed decision-making, and 

access to supportive services for individuals and their 

families. Early detection facilitates research, clinical 

trials, and the development of new treatments [1]. It 

enables personalized care plans and strategies for 

disease management, including medication and 

lifestyle modifications [15]. It also supports financial 

and social planning, ensuring adequate support and 

engagement in meaningful activities. It enhances 
interventions, empowers decision-making, and 

improves the well-being of individuals affected by 

Alzheimer’s disease [2,16].  

This study investigates several research questions on 

using machine learning to diagnose Alzheimer’s 

disease. Thus, these are the main issues that our study 

will try to answer: What are the best machine or deep 

learning architectures for detecting Alzheimer’s 
disease? Which characteristics or indicators are the 

most informative for diagnosing Alzheimer’s disease? 

How can machine and deep learning algorithms handle 

multi-modal data efficiently?  

Several crucial processes are needed for both our study 

and common practice when utilizing machine and 

deep learning to diagnose Alzheimer’s disease [17]. 
These include data collection, preprocessing, model 

construction and training, model assessment, 

hyperparameter tweaking, and classification [18]. 

These actions are essential for creating machine and 

deep learning models that reliably and accurately 

identify Alzheimer’s disease. Data collection includes 

obtaining pertinent information from both healthy and 

patients with Alzheimer’s disease. Data preprocessing 

is ensuring the quality of the collected data by cleaning 

and preparing it. To maximize the model’s 

performance and guarantee its correctness and 
dependability, model creation for feature extraction 

and selection, model training, assessment, and hyper-

parameter adjustment are prerequisites [19,20].  

The rest of this paper is organized as follows: Section 

2 presents the related work, and Section 3 introduces 

the proposed methodologies. The experiment results 

and discussion are in Section 4. Finally, Section 5 
contains conclusions and future work. 

2. Related Work 

The difficulties in identifying Alzheimer’s disease are 
covered in [21], along with how deep learning 

algorithms may be able to increase the precision and 

effectiveness of diagnosis. The authors examine 

several deep-learning architectures that have been 

used in the diagnosis of Alzheimer’s disease, including 

Deep Belief Networks (DBNs), Recurrent Neural 

Networks (RNNs), and Convolutional Neural 

Networks (CNNs). Additionally, they stress how 

crucial feature extraction and data pretreatment are to 
improving the functionality of deep learning models. 

The study concludes by pointing out that deep learning 

algorithms have shown encouraging results in 

identifying Alzheimer’s disease and may enhance 

early diagnosis and treatment. To confirm these 

models’ performance on bigger and more varied 

datasets, however, and to investigate the possibilities 

of various deep learning architectures and 

methodologies for Alzheimer’s disease detection, 

additional study is required.  

A technique is shown in [22] to extract characteristics 

from MRI data and categorize them into four classes: 

mixed dementia, Alzheimer’s disease, normal control, 

and moderate cognitive impairment. The method 

incorporates Convolutional Neural Networks (CNNs) 

with Long Short-Term Memory (LSTM) network. 

Using a dataset of 416 patients, the scientists assessed 

the suggested method’s performance and contrasted it 

with other cutting-edge techniques. With an accuracy 
of 94.79%, the findings demonstrated that the 

suggested strategy performed better than the other 

approaches. According to the paper's conclusion, the 

suggested approach utilizing brain MRI data has the 

potential to increase the efficacy and accuracy of 

Alzheimer’s disease diagnosis. It may also result in 

earlier identification and improved treatment results.  

A suggested method in [6] employs a Long Short-Term 

Memory (LSTM) network to  categorize 

electroencephalogram (EEG) spectral pictures into 

healthy control and Alzheimer’s disease categories 

after a Convolutional Neural Network (CNN) has 

extracted characteristics from the images. A dataset of 

86 people was used in the study to assess the 

technique’s effectiveness and compare it with 

alternative ways. The method outperformed the others, 

with an accuracy of 91.86%. The scientists 

hypothesize that by employing non-invasive EEG 
data, this method might enhance treatment results and 

enable an early diagnosis of Alzheimer’s disease.  

The authors in [23]examined 42 research that made 

use of several neuroimaging modalities, such as MRI, 

PET, and SPECT, as well as different deep learning 

architectures, such as CNNs, Auto-encoders, and 

Generative Adversarial Networks (GANs). The 

performance of the models, the significance of feature 
extraction and data preprocessing, and the possibilities 

of transfer learning were among the main conclusions 

they outlined. The authors conclude that deep learning 
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methods can potentially improve diagnosis efficiency 

and accuracy and have demonstrated encouraging 

results in detecting Alzheimer’s disease from 

neuroimaging data. Further investigation is necessary 

to validate the efficacy of these models on more 
extensive and varied datasets and investigate the 

possibilities of alternative deep learning architectures 

and methodologies in the identification of Alzheimer’s 

disease.  

A CNN is used in the suggested method in [14] to 

extract characteristics from neuroimages and 

categorize them as either normal control or 
Alzheimer’s disease. A dataset of 355 participants was 

used in the study to assess the technique’s 

effectiveness and compare it with alternative ways. 

The method outperformed the others, with an accuracy 

of 94.2%. According to the scientists, the use of 

neuroimaging data in the diagnosis of Alzheimer’s 

disease might be enhanced by this deep learning-based 

method, perhaps resulting in earlier identification and 

improved treatment results. 

In [2], The study focuses on the application of deep 

learning techniques to automatically analyze structural 

MRI scans for AD diagnosis. The authors propose a 

3D CNN architecture that takes the volumetric MRI 

data as input and learns to extract meaningful features 

for classification. The CNN model is trained on a 

dataset consisting of MRI scans from AD patients and 

healthy individuals. The performance of the proposed 

method is evaluated using various metrics, including 

accuracy, sensitivity, specificity, and area under the 
receiver operating characteristic curve (AUC-ROC). 

The results demonstrate that the 3D CNN approach 

accurately distinguishes AD patients from healthy 

individuals, highlighting its potential for accurate AD 

diagnosis. The paper discusses the advantages of using 

3D CNNs over traditional methods, such as manual 

segmentation and feature extraction, for AD diagnosis. 

It emphasizes the ability of deep learning models to 

automatically learn discriminative features from raw 

MRI data, eliminating the need for manual feature 

engineering.  

In [16], The authors trained the normative model on 

the UK Biobank dataset, consisting of 11,034 healthy 

controls, and then applied it to patients with mild 

cognitive impairment (MCI) and AD from various 

datasets. They aimed to assess the severity of brain 

anatomical alterations in these patient groups and 

identify the specific brain regions associated with such 

deviations. Additionally, the performance of the 
normative model was compared to traditional 

classifiers in distinguishing between patients and 

healthy controls. The results of the study demonstrated 

that the normative model successfully captured 

deviations in patients’ brain patterns according to the 

severity of their clinical condition. Key regions 

implicated in the deviations included the medial 

temporal cortex and the ventricular system, consistent 
with previous neuroimaging studies of MCI and AD. 

The researchers found that the normative model 

exhibited comparable cross-cohort generalizability to 

traditional classifiers.  

In [24], The authors focus on a predictive framework 

that utilizes brain volume trajectories for the early 

detection of Alzheimer’s disease. The paper discusses 
the methodology and findings of the study conducted 

by the researchers. The framework proposed in the 

study aims to identify individuals at risk of developing 

Alzheimer’s disease by analyzing brain volume 

changes over time. The authors highlight the 

significance of early detection in improving 

management and treatment outcomes for the disease. 

The review provides insights into the potential of brain 

volume trajectories as a predictive biomarker for 

Alzheimer’s disease and contributes to the existing 

literature on early detection methods.  

In [25], The review focuses on the analysis of features 

associated with Alzheimer’s disease and the detection 

of its early stage using functional brain changes 

observed in magnetic resonance images (MRI) with a 

fine-tuned ResNet18 network. The authors describe 

the methodology employed in the study and present 

the findings. The study aims to identify early signs of 

Alzheimer’s disease by analyzing functional brain 
changes captured in MRI scans. The fine-tuned 

ResNet18 network is utilized as a deep learning model 

to extract relevant features and classify individuals 

into different stages of the disease. The review 

contributes to the existing literature by exploring the 

potential of functional MRI and deep learning 

techniques for early detection of Alzheimer’s disease, 

offering insights into the analysis of disease-related 

features in MRI data.  

In [26], The review focuses on the use of 3D 

convolutional neural networks (CNNs) for diagnosing 

Alzheimer’s disease using structural magnetic 

resonance imaging (MRI) data. The authors describe 

the methodology employed in the study and present 

the key findings. The study aims to develop an 

accurate diagnostic model by leveraging the 

capabilities of 3D CNNs to extract spatial features 

from structural MRI scans. The review contributes to 

the literature by exploring the potential of deep 
learning techniques, specifically 3D CNNs, for the 

diagnosis of Alzheimer’s disease based on structural 

MRI data. The findings provide insights into the 
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effectiveness of this approach and its potential 

implications for clinical applications. 

3. The proposed methodology  
Using Support Vector Machine (SVM), Convolutional 

Neural Networks (CNN), and Gray wolf optimization 

(GWO) algorithm to identify Alzheimer’s disease, the 

proposed methodology , as shown in (Figure 2), 

consists of the following stages: Gathering an MRI 

scan dataset from both healthy and Alzheimer’s 

disease patients, preprocessing the data to make it 

ready for the model’s input and turning the images into 

signals, extracting features to find patterns, then using 

the Gray Wolf optimization algorithm to choose the 

most relevant features, fine-tuning the model to 
increase accuracy, testing the model’s performance on 

an additional MRI scan dataset, and using the trained 

and tested model to predict Alzheimer’s disease by 

inputting new preprocessed MRI scans, are the steps 

involved in this process. 

 

Figure 2. The proposed framework for Alzheimer’s Detection. 

 



IAJPS 2024, 11 (01), 302-315                   Yahea Alzahrani et al                     ISSN 2349-7750 

 

 

w w w . i a j p s . c o m  
 

Page 307 

3.1 Data acquisition  

The objective of this work is to evaluate MRI images 

from an AD dataset to build sophisticated algorithms 

that can enhance the early diagnosis of Alzheimer’s 

disease (AD). The dataset evaluated in this research is 
publicly available on: https: 

//www.kaggle.com/tourist55/alzheimers-dataset-4-

class-of images. This dataset consists of over 6400 

MRI images, divided into four categories: Very Mild 

Dementia (2240 images), Non-Dementia (3200 

images), Moderate Dementia (64 images), and Mild 

Dementia (896 images). 

 

 3.2 Image transformation 

In our study, the images are converted into signals, 

(Figure 3), and each signal is further split into sub-

signals (alpha, beta, theta, delta, and gamma). Alpha, 
beta, theta, delta, and gamma are different frequency 

bands observed in brain signals, such as 

electroencephalogram (EEG) or 

magnetoencephalography (MEG) recordings [17]. 

Each band represents specific patterns of neural 

activity and is associated with various cognitive and 

physiological processes. Alpha waves (8-12 Hz) are 

seen when a person is awake but relaxed with closed 

eyes, mainly in the occipital region. They reflect a state 

of mental relaxation. Beta waves (12-30 Hz) are 

higher-frequency oscillations related to alertness, 

active thinking, and concentration. They are 

commonly observed in the frontal and central regions 

of the brain. Theta waves (4-8 Hz) are present during 

drowsiness, deep relaxation, or light sleep [19,24]. 
They play a role in memory formation and spatial 

navigation and are typically seen in the temporal and 

frontal regions. Delta waves (0.5-4 Hz) are the slowest 

brain waves and are prominent during deep sleep or 

unconscious states. They contribute to restorative 

processes and overall brain health, primarily in the 

frontal and central regions. Gamma waves (>30 Hz) 

have the highest frequency range and are associated 

with active cognitive processing, attention, and 

sensory perception [18]. They are observed in the 

cortical regions and are involved in integrating 

information across brain regions. These frequency 
bands represent specific neural activities and 

contribute to various cognitive functions and states of 

consciousness [25]. Analyzing their power, coherence, 

or phase relationships can provide insights into brain 

function and be applied in research and clinical 

settings related to cognition, sleep, neurological 

disorders, and brain-computer interfaces. Several 

characteristics, including mean, Shannon entropy, 

min, max, skewness, normalized sd, avp, and others, 

are retrieved for each of the signals. 

 

Figure 3. Dividing the signal into subbands. 

 

 

 

 

https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
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  3.3 Features Extraction 

To improve the detection system’s accuracy and 

efficiency, it is essential to extract pertinent elements 

from brain imaging data regarding Alzheimer’s 

disease. Several Discrete Wavelet Transform (DWT) 

families, including demy, semy, bior1, and db8 are 

combined with statistical characteristics, including 

entropy, min, max, skewness, standard deviation, and 

mean, and others in our feature extraction process [26].

  

A signal may be broken down into several frequency 

sub-bands (Figure 3 and 4) using the DWT signal 

processing approach, which reveals the frequency 

content of the data. The brain imaging data is 

preprocessed to reduce noise and artifacts before being 

broken down into different frequency sub-bands using 

the DWT, such as alpha, beta, delta, theta, and gamma, 

in the feature extraction process utilizing DWT and 

statistical features [27,28]. Next, each sub-brand’s 

statistical properties are extracted to provide details 

about the distribution and texture of the data [21]. A 
feature selection technique is then used to rank the 

extracted features according to their relevance to the 

disease detection job [18,24]. This ranking is then used 

to train a classification model, such as SVM, CNN to 

identify whether or not a person has Alzheimer’s 

disease [6]. The wavelet functions db8, semy, bior1, 

and demy, which are renowned for their time-

frequency localization capabilities and effective signal 

representation were employed in our work. The high-

pass filter in these wavelet functions breaks down 

signals into high-frequency components [20,29]. It is 
frequently used with the low pass scaling function to 

create the filter bank that the DWT uses. 

Figure 4. Signals division using DWT families. 

3.4 Features Selection 

The Gray Wolf Optimization (GWO) algorithm is a 

metaheuristic optimization algorithm inspired by the 
social hierarchy and hunting behavior of gray wolves 

in nature. It was proposed by Mirjalili et al [30]. In 

2014. The GWO algorithm is used to solve 

optimization problems, aiming to find the optimal 

solution or approximate the global optimum in a 

search space. It is particularly effective for solving 

complex optimization problems with multiple 

variables and non-linear objective functions [3]. The 

algorithm is based on the social behavior and hunting 

mechanism of gray wolves, which involves 

cooperation, communication, and leadership within a 
pack [2,31]. The algorithm mimics this behavior by 

defining three main roles for the wolves alpha, beta, 

and delta. The alpha wolf represents the best solution 

found so far in the search space. It is responsible for 

leading the pack and coordinating the search process 

[32]. The beta wolf is the second-best solution found. 

It supports the alpha wolf and helps in the exploration 

of the search space. The delta wolf represents the third-

best solution obtained. It assists the alpha and beta 

wolves in the search process [9].  

The GWO algorithm starts with an initial population 

of candidate solutions, represented as a group of 

wolves. Each wolf corresponds to a potential solution 

to the optimization problem [4,33]. The positions of 

the wolves in the search space are updated iteratively 

based on their social interaction and hunting behavior. 

During each iteration, the position of each wolf is 

updated by three main operations: Exploration: The 

wolves explore the search space to discover new 

promising regions. They update their positions by 

considering the alpha, beta, and delta wolves’ 
positions. Exploitation: The wolves converge towards 

the best solutions found so far. They adjust their 

positions by considering the alpha wolf’s position and 

modifying it [34]. Encircling and trapping: The wolves 

try to encircle and trap the prey (optimal solution) by 

adjusting their positions accordingly [3].  

The GWO algorithm continues the iterative process 

until a stopping criterion is met, such as reaching a 

maximum number of iterations or achieving a desired 
level of convergence [35,36]. The final positions of the 

wolves represent the approximate optimal solutions to 

the optimization problem. The GWO algorithm has 

been applied to various optimization problems, 

including engineering design, image processing, data 

clustering, and machine learning. It is known for its 

simplicity, effectiveness, and ability to handle 

complex optimization landscapes [1]. 
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3.5 Features Classification 

Classification using Support Vector Machines (SVM) 

is a popular machine-learning technique for solving 
classification problems [3]. SVM is a supervised 

learning algorithm that aims to find an optimal 

hyperplane that separates data points belonging to 

different classes (Figure 5) [20]. It is particularly 

effective in cases where the data is not linearly 

separable by transforming the data into a higher-

dimensional space.  

The SVM algorithm works by mapping data points 

into a higher dimensional feature space and finding the 
best hyperplane that maximizes the margin, which is 

the distance between the hyperplane and the nearest 

data points from each class. The hyperplane is chosen 

such that it can generalize well to unseen data, 

minimizing the risk of overfitting [9]. The SVM 

algorithm can handle both linear and nonlinear 

classification tasks by using different types of kernels. 

A kernel function calculates the similarity between 

data points in the higher-dimensional space without 

explicitly computing the transformation. Common 

types of kernels used in SVM include linear, 
polynomial, radial basis function (RBF), and sigmoid 

kernels [14].  

To classify new data points, the SVM algorithm 

determines which side of the hyperplane they fall on, 

assigning them to the corresponding class [30,37]. 

SVMs have been widely used in various applications, 

including image recognition, text categorization, 

bioinformatics, and financial analysis, due to their 

ability to handle complex classification problems and 
their robustness against overfitting [24]. It’s important 

to note that while SVMs are powerful classifiers, they 

may have limitations with large datasets or noisy data. 

In such cases, appropriate preprocessing techniques 

and parameter tuning may be necessary to achieve 

optimal performance. 
 

Another algorithm that we used in this work is 

Convolutional Neural Networks (CNNs) (Figure 6). 

CNNs are deep learning architectures used for 

analyzing visual data like images and videos [2]. They 

have transformed computer vision by introducing 

specialized layers that efficiently learn and extract 

hierarchical representations from raw pixel inputs. 

Key components of CNNs include convolutional 

layers that extract local features, pooling layers that 

downsample feature maps, activation functions for 

non-linearity, fully connected layers for high-level 
feature combinations, and backpropagation for 

training [24]. CNNs can leverage pre-trained models 

for transfer learning and have been successful in tasks 

like image classification, object detection, and 

semantic segmentation. They can also be adapted for 

other data types through modifications like 1D or 2D 

convolutions, making them a crucial tool in deep 

learning for visual analysis [3]. Convolutional Neural 

Networks (CNNs) are highly effective for visual 

analysis tasks. Their key characteristics, including 

local receptive fields, shared weights, hierarchical 
feature extraction, translation invariance, spatial 

downsampling, non-linear activation functions, 

backpropagation training, pre- trained models for 

transfer learning, parallelization with GPU 

acceleration, and versatility in handling various data 

types, contribute to their success. CNNs excel in tasks 

such as image classification, object detection, image 

segmentation, and more. 

 

 

Figure 5. Support vector machine. 
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Figure 6. Convolutional Neural Network. 

Figure 7. SVM classifier confusion matrix. 
 

4. RESULTS AND DISCUSSION: 

A separate test set of MRI scans not used during 

training provides an unbiased evaluation of the trained 

model’s performance. Our study assesses the model’s 

performance using evaluation metrics to measure the 

accuracy of this test set, where in our work, we divide 

the data into 70% training and 30% testing data. The 

’evaluate’ method of the model is called to obtain the 

loss and metric values for the model in ’test mode,’ and 

the testing accuracy is displayed for evaluation. In 

Alzheimer’s disease detection, the classification 
model’s performance is evaluated using values such as 

true positives (TP), false positives (FP), false 

negatives (FN), and true negatives (TN). TP refers to 

correct instances classified as positive, FP refers to 

instances that are incorrectly classified as positive, FN 

refers to instances that are incorrectly classified as 

negative, and TN refers to instances that are 

incorrectly classified as negative. These values are 

used to calculate performance metrics like accuracy. 

This metric provides insights into the model’s 

strengths and weaknesses and can be helpful in 

optimizing the model for better performance. 
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Figure 8. CNN classifier confusion matrix. 

A confusion matrix is (Figures 7 and 8) a Table that 

compares the predicted and actual class labels of a 

dataset to evaluate the performance of a classification 

model. In multi-class classification, where there are 

more than two classes, the confusion matrix includes 

the counts of (TP), (TN), (FP), and (FN) for each class. 

The confusion matrix for multi-class classification is a 

square matrix with the same number of rows and 

columns as the number of classes. The rows represent 
the actual class labels, and the columns represent the 

predicted class labels. Each cell in the matrix indicates 

the count of instances that belong to the actual class 

and were predicted to belong to the predicted class. 

False positives (FP) occur when the actual class is a 

normal brain. However, the predicted class is 

abnormalities in the brain, and false negatives (FN) 

occur when the actual class is abnormalities in the 

brain. However, the predicted class is a normal 

brain. The accuracy is calculated using the following 

equation: Accuracy = TP + TN/(TP + FP + FN + TN) 

 
In (Figure 9), from the provided data, we observe the 

accuracy scores of different classifiers for a particular 

task. In KNN (K-Nearest Neighbors), It has the lowest 

accuracy score of 43.26%. KNN is a simple algorithm 

that classifies data based on the majority class of its 

nearest neighbors. However, it seems to perform 

poorly compared to other classifiers in this case. The 

decision tree classifier achieves an accuracy of 

74.22%. Decision trees create a tree-like model to 

make decisions based on feature values. Although it 

performs better than KNN, it is still outperformed by 

other classifiers. Rule induction achieves an accuracy 

of 69.6 %. Rule induction algorithms generate a set of 

if-then rules to classify data. It performs slightly better 

than the decision tree but falls short compared to other 
classifiers. The Naive Bayes classifier achieves an 

accuracy of 74.6%. Naive Bayes is based on Bayes’ 

theorem and assumes independence between features. 

It performs similarly to the decision tree but does not 

surpass the performance of more advanced models. 

The generalized linear model achieves a significantly 

higher accuracy of 88.29%. This model is a flexible 

framework that includes linear regression, logistic 

regression, and other models. It performs well 

compared to the previous classifiers but is still 

surpassed by deeper learning models. The deep 

learning model achieves an accuracy of 78.32%. Deep 
learning models, such as neural networks with 

multiple layers, can learn complex patterns and 

relationships in data. While it performs better than 

some earlier classifiers, it is still not the top performer.  

The combination of our proposed methodology with 

Support Vector Machines (SVM) achieves an 
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impressive accuracy of 94.5%. SVM is a powerful 

classification algorithm that finds an optimal 

hyperplane to separate data points. The combination of 

it with our proposed methodology further enhances its 

performance. The combination of our proposed 

methodology with Convolutional Neural Networks 

(CNN) achieves the highest accuracy of 95.4%. CNNs 

are specifically designed for visual analysis tasks, 

making them well-suited for the given task. 

 

 
Figure 9. Comparing our Results with previous Results 

 
 

In (figure 10), the provided data compares the accuracy of SVM and CNN models across different stages of dementia 

and provides the total accuracy for the combined CNN and SVM models. In Mild Demented, The SVM model achieves 

an accuracy of 96.3% in identifying mild dementia cases. The CNN model achieves a slightly lower accuracy score 

of 95.6% for mild dementia cases. In Moderate Demented, the SVM model achieves a perfect accuracy score of 100% 

in identifying moderate dementia cases. In CNN Accuracy, the CNN model also achieves a perfect accuracy score of 

100% for moderate dementia cases. In Non-Demented: The SVM model achieves an accuracy of 94.3% in correctly 

identifying non-demented cases. In CNN Accuracy, the CNN model outperforms the SVM model with a perfect 

accuracy score of 100% for non-demented cases. In Very Mild Demented, The SVM model achieves an accuracy of 

93.3% in identifying very mild dementia cases. In CNN Accuracy: The CNN model performs slightly better with an 

accuracy score of 94.9% for very mild dementia cases. In Overall (CNN + SVM): Combined Accuracy: The overall 

accuracy of the combined CNN and SVM model is 94.6%. This represents the accuracy of the combined model across 
all stages of dementia. 
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Figure 10. Accuracy of stages using both SVM and CNN. 
 

5. CONCLUSION: 

In conclusion, the use of Support Vector Machines 

(SVM) and convolutional neural network (CNN) in 

conjunction with Discrete Wavelet Transform (DWT) 

for detecting Alzheimer’s disease using brain MRI 

images has yielded promising results, achieving an 

overall accuracy of 94.5% and 95.4% respectively. The 

SVM algorithm and CNN, known for its effectiveness 

in classification tasks, was employed to classify 

different stages of Alzheimer’s disease based on the 

provided MRI images dataset. By leveraging the DWT 
technique, which analyzes signals in both time and 

frequency domains, the model was able to extract 

relevant features from the data and improve the 

classification accuracy. The obtained accuracy of 95.4% 

suggests that the CNN-DWT approach is highly 

effective in identifying Alzheimer’s disease. This level 

of accuracy indicates that the model correctly classified 

the majority of cases within the MRI images dataset, 

demonstrating its potential as a valuable tool for early 

detection and diagnosis. Furthermore, it is essential to 

validate the results on larger and more diverse datasets 
to ensure the generalizability and robustness of the 

SVM and  CNN -DWT approach. Additional research 

and testing are needed to evaluate its performance 

against different populations and to assess its reliability 

in real-world clinical settings. 
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