
IAJPS 2024, 11 (03), 64-76                            J.Gopala Krishna et al                       ISSN 2349-7750 
 

 

w w w . i a j p s . c o m  
 

Page 64 

 

 

     CODEN [USA]: IAJPBB                         ISSN: 2349-7750 
 

      INDO AMERICAN JOURNAL OF 

   PHARMACEUTICAL SCIENCES 

SJIF Impact Factor: 7.187   
https://zenodo.org/records/10854649 

 
 

Available online at: http://www.iajps.com                                                            Review Article 
                                                  

"NANO-QSAR MODELING FOR PREDICTING THE TOXICITY 

OF METAL-BASED METAL OXIDE NANOPARTICALS: AN IN-

DEPTH EXPLORATION" 
1D.Pravallika, 2Dr.J.Gopala Krishna  

1Student of Dr.K.V.subbareddy Institute of Pharmacy 
2M.S Pharm,Ph.D.,  Associate Professor, Department of Pharmaceutical Chemistry 

Dr.K.V.Subbareddy Institute of Pharmacy 

Abstract: 
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The present study proposes a computational QSAR models for predicting the toxicity of MEONPs. Two types of 
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nanoparticles. The two parameters, enthalpy of formation of gaseous cation (∆Hme+) and polarization force(Z/r) 

were elucidated to make a significant contribution for the toxic effect of the metal oxide nanoparticles. 
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INTRODUCTION: 

Metal-based and metal oxide nanoparticles have 

become integral components in an array of consumer 

products and industrial applications. Their unique 

physicochemical properties offer numerous 

advantages, yet the assessment of their potential 

toxicity is a critical consideration in their safe 

utilization [1]. These nanoparticles, particularly metal 

oxide nanoparticles, hold a substantial share in 

various sectors, encompassing information 

technology, healthcare, transportation, and 
construction, constituting approximately 80% of the 

market volume. Metal oxide nano particles have wide 

range of technological applications like gas sensors, 

photovoltaics, adsorbents, catalysis and fuel cells due 

to their unique superparamagnetic, piezoelectric, 

optical, etc. properties [2] 

However, understanding the toxicity mechanisms of 

these nanoparticles is a complex endeavour. Factors 

such as nanoparticle size, shape, crystal structure, and 

dosage all play intricate roles in their potential harm 
[3]. Notably, certain nanoscale metal oxide 

nanoparticles, including Cuo and Zno exhibit a 

heightened degree of toxicity when compared to 

carbon nanoparticles and multi-walled carbon 

nanotubes. Inflammatory responses, among other 

factors, are critical drivers of these toxic effects, 
influencing both organism-level and cellular- level 

responses. [4] 

In light of these complexities, the development of 

nano-QSAR (Quantitative Structure-Activity 

Relationship) models has emerged as a valuable tool 

for predicting and understanding the toxicity of metal-

based and metal oxide nanoparticles. [5].The first Nano-

QSAR model designed to predict the cytotoxicity of 

metal oxide nanoparticles was introduced by Puzyn et 

al[6]. 

Nano-QSAR entails a statistical approach that seeks 

to establish quantitative relationships between 

independent variables, which encompass the 

physicochemical properties of these nanoparticles, 

and dependent variables, signifying their toxic 

effects.[7] Over the past decade, substantial progress 

has been made in modeling various nanoparticle 
properties, employing QSAR methodologies.[8] The 

term "nano-QSAR" specifically denotes the pursuit 

of quantitative connections between nanoparticle 

features and their effects on specific target 

activities.[9] Multiple nano-QSAR models, 

concentrating on both metallic and metal oxide 

nanoparticles, have been developed to predict their 

toxicity.[10] 

This comprehensive article provides an extensive 

exploration of the applications and significance of 

nano-QSAR modeling in comprehensively assessing, 

predicting, and understanding the toxicity of metal-

based and metal oxide nanoparticles, ultimately 

contributing to the responsible and informed use of 

these nanomaterials across various industries. [11] 

Relying on the type of experimental data, QSAR can 

predict the physical and chemical properties and toxic 

influences of new compounds. Formerly, nano-QSAR 

has been developed to predict solubility, partition 

coefficient and young’s modulus. But now we can 
apply nano- QSAR to predict toxicity of 

nanoparticles. [12] 

Metal oxide Descriptor 
ΔHMe+(kcal mol-1) 

Leverage 
value, h 

Observed log 
1/EC50(mol-1) 

Predicted log 
1/EC50(mol-

) 

Residuals set 

Zno 662.44 0.33 3..45 3.30 0.15 T 

Cuo 706.25 0.29 3.20 3.24 -0.04 T 

V2O3 1097.73 0.11 3.14 2.74 0.40 V1 

Y2O3 837.15 0.21 2.87 3.08 -0.21 T 

Bi2O3 1137.40 0.10 2.82 2.69 0.13 T 

In2O3 1271.13 0.10 2.81 2..52 0.29 T 

Sb2O3 1233.06 0.10 2..64 2.57 0.07 V1 

Al2O3 1187.83 0.10 2.49 2.63 -0.14 T 

Fe2O3 1408.29 0.13 2.29 2.35 0.06 T 

SiO2 1686.38 0.26 2.20 1.99 0.21 T 

ZrO2 1357.66 0.11 2.15 2.41 0.26 V1 

SnO2 1717.32 0.28 2.01 1.95 0.06 T 

TiO2 1575.73 0.19 1.74 2.13 -0.39 T 

CoO 601.80 0.38 3.51 3.38 0.13 
V2 

NiO 596.70 0.39 3.45 3.38 -0.07 
V2 

Table1: structure and toxicity data 
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The Nano QSAR were developed using descriptors, 

which were calculated by combining the molecular 

descriptors of the components of the mixture in a 

component-based approach. [13] 

Based on the toxicity data and structural descriptors, 

we can write a simple and significant Nano-QSAR 

equation, using only one descriptor to predict the 

concentration of a compound. 

[14] 

 

log(1/EC50) = 2.59−0.50·ΔHMe+ 

 

Where ΔHMe+ enthalpy of 

formation of a gaseous cation 
having the same oxidation state 

as that in the metal oxide structure 

Me(s)→Men+(g) +n· e Δ HMe+ 

 

The table represents experimental and predicted data 

related to the toxicity of the studied nanomaterials in 

terms of EC50.The predicted EC50 values were 

calculated a single descriptor, Δ H Me+. The 

nanomaterials are denoted by T, and validation sets 

by V1 and V2. The leverage value h indicates 

deviations of the structure of the compound from 

those used for the QSAR development. The data 

given in the below table indicates that Zn O, Cu O, 

Nio and CoO nanoparticles exhibit the highest 

toxicity with TiO2 nanoparticles being the least 

toxic. [6] 
 

Biological data and nanoscale structural 

properties: 

Data on the toxic potencies of Metal oxide 

nanoparticles were obtained from the literature and 

laboratory experiments that were expressed in terms 

of the negative logarithm of EC50 (mol/L) [6,8]. 

Twenty-six physicochemical properties of metal 

oxide nanoparticles were calculated, which contained 

physicochemical, scale, and thermodynamic 

properties of both nanoparticles and metal ions. 

Calculations were made at the semi-empirical 

theoretical level using PM6 methods. [6] 

The descriptors could reliably reflect various 

properties of metal oxide nanoparticles, which 

included enthalpy of formation of a gaseous cation, 

energy difference and standard heat of formation. [6] 

Twenty-three properties of metal ions released from 

the MeOxNPs included: 

 

softness index (σp), ionic charge (Z), softness index 

per ion charge (σp/Z) atomic number (AN), 

difference in ionization potentials between the O(N 

+1) state and ON state (IP) of the ion (ΔIP), and 

atomic ionization potential (AN/ΔIP) ,electro 

negativity (Xm), Pauling ionic radius (r), and covalent 

index (X 2r); electrochemical potential (ΔE ); first 

hydrolysis constants, relative softness(Z/rx) where x 

represents electro negativity values, atomic radius 

(AR), atomic weight (AW), and electron density 

(AR/AW) ; polarization force parameters (Z/r, 
Z/r2and Z2/r), and similar polarization force 

parameters (Z/AR and Z/AR2) .[15] 

The above descriptors are size-independent, which 

seems to be in conflict with the widely accepted 

notion that the size of MeONPs is decisive for their 

toxicity.[6] 

 

The variation of property with the increasing size of 

the nanomaterials does not occur until it reaches the 

saturation point. Therefore, we assumed that the 

clusters must be of the same size and bigger than 5nm 

for all the studied oxides. 

Methods: 

 
Empirical toxicity testing: 

Empirical methods are much faster than quantum-

mechanical ab initio methods allow calculations of 
larger systems to be carried out, but their accuracy is 

often disputed. 

From a quantum-mechanical point of view, 

calculations for nanoparticles with a size of 15–90 nm 
were not feasible (the systems are too large), so it was 

necessary to maximally simplify the structural models 

used to calculate the descriptors. We calculated the 

descriptors using smaller metal oxide fragments 

(clusters) of the same size for all nanoparticles and one 

descriptor, based on the characteristics of the 

considered metal atoms. [16] 

The two types of the nanoparticles that were tested 

empirically, Mn2O3 (99.2%, TEM, 30nm) and 

Co3O4 (99%, TEM, 10–30nm), were taken. The E. 

coli was cultured at 37˚C overnight using Luria-

Bertani (LB) broth. Cultures were centrifuged at 

3000g for 10min and resuspended in sterilized 

physiological saline. Densities of cultures of bacteria 

were adjusted to 0.5×109– 1.66-109 cells/mL as 

determined by enumeration of colony forming units 

on LB Petri dishes. 

Cytotoxicity of nanoparticles were expressed in terms 

of the negative logarithm of EC50, which is the 

effective concentration of a given oxide that reduces 

viability of cells of bacteria by 50% 
.Heterotrophic mineralization of glucose by bacteria 
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was also identified as a measure of the rate of 

metabolism of the selected samples. After being 

washed three times with physiological saline, 0.1mL 

suspensions of E. coli were added to 2mL of distilled 

water solution at the nominal concentrations of 200, 
400, and 600mg/L, respectively. To ensure dispersal 

of nanoparticles, stock solutions were prepared at a 

concentration of 1.2g/L after sonication at 25C for 

20min. Suspensions were sonicated again for 10min 

just before commencement of the exposure 

experiments. Both control and experimental groups 

were then agitated for 2h at 150rpm. Rates of 

metabolism were measured by quantification of 
14CO2 released during metabolic respiration of 

uniformly radioactive label UL-14C-D-glucose 

dissolved in ethanol following the 2h incubation 

period. 

At time zero, the 50mL glass vial was sealed with a 

silicone stopper, on the bottom of which was hung a 

needle with a folded filter paper soaked with 0.05mL 

of 4mol/L NaOH solution for CO2 trapping. Trapping 

occurred overnight (8–12h) after injection with 

1mol/L H2SO4 at the end of 2h incubation. Filter 

papers were then removed and placed in 6mL 
scintillation vials containing 1mL of 1mol/L NaOH. 

Then 3mL scintillation cocktail was added to the 

scintillation vials and radioactivity was quantified by 

counting with a liquid scintillation counter. 

Concentrations were calculated from disintegrations 

per minute (DPM) and the specific activity of the 

mixture. [17] 

4.2 Characterisation of metal oxide nanoparticles: 

 

The physicochemical properties of the MeOx NPs 

were analysed using transmission electron microscopy 

(TEM), dynamic light scattering (DLS), and zeta 

potential analysis. To obtain the original particle size 

of the MeOx NPs and observe their particle 

morphology, two drops of the NP suspension were 

placed on a copper mesh with a carbon film using a 
burette. Once the sample was dry, the nanoparticles 

were observed using a 200kV field emission 

transmission electron microscope. Dynamic light 

scattering (DLS) was used to test the aggregation size, 

and zeta potential (ZP) in the cell culture medium of 

MeOx NPs in 20% foetal bovine complete medium 

was measured on a Malvern Zetasizer Nano ZS 

instrument. [18] 

Research on Nano-QSAR model 

Dataset 

In this study, 21 types of MeOx NPs were 

investigated, which contained five types of metal 

oxides, including MO, MO2, MO3, M2O3 and 

M3O4. The LC50 value was used as an indicator to 

characterise the acute cytotoxicity of the MeOx 

NPs.The acute cytotoxicity is expressed as the 

decadic logarithm of the concentration of 

nanoparticles. [19]. 

Dataset splitting 

 

Dataset splitting is an essential part of the 

development of statistically significant nano-QSAR 

models. The toxicity dataset was divided according to 

the following three principles: 

 Sample selection in the test set and training set 

should cover all types of oxides 

 The split randomly keeps the highest and lowest 

toxic NPs in the training set 

 The dataset should be divided into training and 

test sets with selected into the training set for 

descriptor selection and model development, and 

the remaining 5 were selected into the test set for 

assessing the predictivity of the models. [20] 

Optimal descriptors: 

 

We used improved SMILE based optimal descriptors 

to build prediction models for the cytotoxicity of 

MeOx NPs. Firstly, we encoded the physicochemical 

characteristics of the MeOx NPs and then combined 

them with SMILES expressions to obtain improved 
SMILES- based optimal descriptors, which were 

calculated as follows: [21] 

DCW =⅀CW (sk)+⅀CW (ssk)+⅀CW (ck)+⅀CW 

(cck) 

 

Where, Sk and SSk - correlation weights of the 

attributes ck and cck -correspond to the attributes 

of the codes 

CW (ck) and CW (cck) -the correlation weights of 
the features, The construction of Sk (or Ck) 

and SSk (or CCk) can be represented as 

follows: 

ABCDE .. 

 A, 
B, C, D, ABCDE . AB, 

BC, CD, DE 

Also, the following normalization equation was used 

for assigning the codes: 

 

Norm (Xk) = min (Xk)+Xk /min 

(Xk)+max (Xk) 

 

According to the given scale (Fig. 1), the number of 

unique values in each parameter was less than 10; 

therefore, the improved SMILES-based optimal 
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descriptor representations could be coded by 

assigning a number between zero and nine in a single 

character. In addition, alphabet characters of A, B, C, 

D, E, and F were expressed as molecular weight, 

mass percentage of metal elements, cation charge, 
zeta potential, individual size, and aggregation size, 

respectively. 

To develop nano-QSAR models, the calculation was 

carried out with the CORAL software [22]. The nano-

QSAR model for predicting the acute cytotoxicity of 

MeOx NPs to A549 cells can be represented by the 

following equation: 

Log10 (LC50) = C0+C1×DCW(T*N*) 

 

where, C0 and C1 are the intercept and slope. 

 

The improved SMILES-based optimal descriptors 

used in this study consist of traditional SMILES 

descriptors and six codes for physiochemical

 
 

Fig. 1 Classification standards of 
the normalized physicochemical 

parameters. 

 

Including molecular weight, mass fraction of metal 

atoms, zeta potential(zp), individual size (Is) 

aggregation size (AS), and cationic charge (CC). 
Data on the physicochemical features (including 

molecular weight, cationic charge, and mass 

percentage of metal elements) of various MeOx NPs 

can be easily obtained from their molecular formula 

and the periodic table. 

 

5.4 Model validation: 

 

Model validation is crucial to nano-QSAR models. 
The developed QSAR models were evaluated 

according to the standards recommended by the 

Organisation for Economic Cooperation and 

Development (OECD) [23]. Validation of the nano-

QSAR models included internal verification and 

external verification. Internal validation was used to 

verify the fitting ability and robustness of the models 

and external validation mainly tested the predictive 

ability of the models for new material properties. The 

squared correlation coefficient (R2) and standard error 

(SE) were employed to indicate the model fitting 

ability. To reduce the probability of the model’s 
overfitting and prove the robustness of the nano-

QSAR model, we applied the leave- one-out cross 

validation (Q2 LOO) algorithm for internal validation, 

while the mutual validation coefficient (Q2 Ext) was 

used for external validation. Additionally, to avoid 

the occurrence of accidental correlations, a Y-

randomisation test was also performed to verify the 
reliability and robustness of the model. These reliable 

model criteria, was proposed by Golbraikh and 

Tropsha. [24] 

5.5 Applicability domain. 

According to the third principle of OECD [23], any 

Nano-QSAR model should have a clearly defined 
applicability domain (AD). Even when a model has 

excellent robustness and external predictivity, it still 

cannot reliably predict all chemicals, only those 

having physicochemical, structural and biological 

features similar to that of the training set chemicals 
[25]. Several methods have been proposed to define 

the AD of QSAR models, among which the most 

common is the Williams plot method [26]. In this 

study, the Williams plot was employed to detect the 

existence of influential MeOx NPs in the training set, 

and to verify the prediction reliability for MeOx NPs 

in the test set. The vertical axis of the Williams plot 
is the standard residual (δi). The chemicals with the 

absolute standard residual |δ| > 3 are regarded as the 

Y- outliers. The horizontal axis of the Williams plot 

is the leverage value hi, which is defined as  

hi = XT i (XT X) −1 Xi 

 

where Xi is a row vector of descriptors for a 

particular MeOx NP 

 

X is the n×m matrix of m model descriptors for n 

training set MeOx NPs 
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. This index is used to measure the distance between 

the new chemicals and chemicals in the training set. 

h* is the warning leverage of the application domain. 

The h* value can be calculated as, 

h*=3p/n 

 

where, p is the number of variables used in the model 

n is the data size of the training set. 

6. Computational Nano QSAR model: 

 

To explore the effects of the physicochemical 

structure parameters of MeOx NPs on their acute 

cytotoxicity, four toxicity prediction models were 

established, including basic Model I and Model II 

considering particle size, Model III considering zeta 

potential, and Model IV considering both particle size 

and zeta potential. [27] 

Here, Model I was considered a basic model that the 

improved the SMILES based optimal descriptor only 

containing three codes, MW, M%, and CC. 

Case study 1: The effect of particle size: 

 

Two different forms of the improved SMILES -based 

optimal descriptors were used to model the acute 

cytotoxicity to the A549 cells. The corresponding 

nano-QSAR models were obtained as follows: 

                                                         Model I 

 

 

 

                                                         Model II. 

Log10 (LC50) = 0.450(± 0.144) + 0.136(± 0.006) × 

DCW (1,6) 

R2 = 0.865, Q2 LOO = 0.832, SE = 0.210, F = 78, n = 

16, p < 0.05 
 

 

Log10 (LC50) = −4.449 (± 0.117) + 0.313(± 0.005) × 

DCW (2,10) 

R2 = 0.972, Q2 LOO = 0.962, SE = 0.096, F = 478, n 

= 16, p < 0.05 

In both models, DCW is the value of the descriptor; n 

is the number of NPs in the training set; R2 is the 

squared correlation coefficient; Q2 LOO is the cross-

validated R2; SE is the standard error; F is the Fischer 

ratio; and p is the p-value. 

Both models were then applied to predict the log10 

(LC50) values of the MeOx NPs in the test set for 

external validation. 

The predicted values are shown in Table 2[28]. It can 

be concluded that these two models are statistically 

reliable. The plots of the predicted log10 (LC50) 

values against the experimental values for Models I 

and II shown in figure 

 

 

Fig2: Plot of predicted vs. experimental log10 (LC50) values for models I and II 
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Case study 2: The effect of zeta potential. 

We employed the improved SMILES-based optimal 

descriptor with zeta potential to model the acute 

toxicity, and obtained the corresponding nano-QSAR 

model as follows: 

Log10 (LC50) = −2.646 (± 0.135) + 0.302(± 0.002) × 

DCW (2,14) 
 

R2 = 0. 902, Q2 LOO = 0.874, SE = 0.178, F = 178, n 

= 16, p < 0.05 
 

The predicted log10 (LC50) values based on Model 

III are presented in Table 2. The plots of the 

predicted values against the experimental values for 

Model III are presented in Fig.3. 

Remarkably, the performance of the parameters of 
Model III was superior to that of Model I. 

 

Since both models selected the same sample set and 

modelling method, the difference between prediction 
performances mainly depended on whether the 

improved SMILES-based optimal descriptor 

considered the zeta potential. 

Thus, result strongly suggests that the Zeta potential 

has a certain effect on the acute cytotoxicity of metal 

oxide nanoparticles. 

 
 

 

Table 2: The predicted values for the training set and test set of the different models 

Fig.3. Plot of predicted vs experimental log10(LC50) values for model III. 
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Case study 3: The effect of particle size and zeta 

potential: 

The improved SMILES-based optimal descriptor with 

particle size and zeta potential was used to model the 

cytotoxicity of MeOx NPs to A549 cells. The 

resulting nano-QSAR model was obtained as follows: 

Model IV 

 

Log10 (LC50) = −1.214 (± 0.099) + 0.151(± 0.004) × 

DCW (1,5) 
 

R2 = 0.996, Q2 LOO = 0.984, SE = 

0.037, F = 753, n = 16, p < 0.05 
 

The predicted log10 (LC50) values for Model IV are 

presented in Table 2. The plots of the predicted values 

against the experimental values for Model IV are 

shown in Fig.4. 

Moreover, it should be noted that Model IV, which 

considered the particle size and zeta potential, was 

better than the other three models since the values of 

R2 and Q2 LOO were significantly improved. 

Therefore, Model IV here shows the best goodness-

of-fit and highest reliability, which indicates that 

particle size and zeta potential are both great 

influential in the acute cytotoxicity of A549 cells.

 

 

 

Fig.4. plot predicted vs experimental log10(LC50)values for model IV 
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According to the OECD QSAR verification 

principles, the models were fully validated 

because only properly validated models can 

provide meaningful mechanical interpretation 
[23]. The calculated R2 values of the four 

models reached more than 0.8, the root means 

square error (RMSE) and the mean absolute 

error (MAE) of the predicted values were low, 

and the external validation coefficient Q2 Ext > 

0.7. Consequently, we verified that the four 

Nano- QSAR models all have good 

adaptability, robustness, and external prediction 

capability. To avoid the “correlation-by-

chance” and confirm the statistical significance 

of the nano-QSAR models, Y-randomisation 

tests were also performed. The dependent 

variable y of the original dataset was randomly 

disordered and combined with the original 

independent variable to form a new dataset. 
Thus, a new model was established and its 

complex correlation coefficient was calculated. 

The dataset was tested 10 times for each model 

and the obtained R2 values of the newly 

generated models are presented in the ESI. As 

expected, all the models generated produced 

low R2 values. This indicates that only the 

correct dependent variables can be used to 

generate a real QSAR relationship and 

the chance correlation had little or even no effect Fig.5.Prediction residual distribution 

. for four Nano-QSAR models 
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on the presented models. In addition, the 

residuals between the predicted and 

experimental log10 (LC50) values for the four 

developed models are shown in Fig.5. Since 

most of the residuals are randomly distributed 

on both sides of the zero baseline without 

obvious regularity, it can be concluded that no 

systematic errors exist in the established four 

prediction models. 

7. Applicability domain analysis 

 

Since the four nano-QSAR models developed 

this study will probably be employed for 

reliably estimating the properties of newly 

designed MeOx NPs ,the since it may 
increase the confidence in predictions and 

allow the practical use of nano-QSAR 

models. The plots of the standardized 

residuals and leverages value (Williams plot) 

for the four developed models are shown in 

Fig. 6. The area within the warning leverage 

value h* = 0.375 and ±3 standard residuals 

were defined to illustrate the specific 

application range of the nano-QSAR models. 

As shown in Fig 6, all 21 types of MeOx NPs 

fall into the application domain, and the 
prediction values can be considered reliable. 

There were no obvious outliers in both the 

structural similarity axis and the acute 

cytotoxicity predictions . 

 

 

. Fig.6.Applicability domains for 

 

the four Nano-QSAR models 
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8. Mechanism interpretation: 

 

In previous work, two different types of toxicity 

mechanisms of MeOx NPs were reported. 

Specifically, Mechanism I involves detachment of the 
metal cations from the surface of MeOx, while 

Mechanism II employs the redox properties of the 

metal oxide surface. [29][30] 

In this study, the method for analysis of descriptor 

sensitivity combined with experiments was applied to 

evaluate the relative importance of each parameter on 

the cytotoxicity of MeOx NPs. 

Six physicochemical parameters were employed to 

the improved SMILES-based optimal descriptors to 

characterise the nanostructure and develop the nano-

QSAR models. 

The reduced R2 value was calculated when one 

feature is excluded from the original model. Then the 

differences between the original R2 and the reduced 

ones were calculated and shown as R2diff. 

It is obvious that the higher value of R2diff, the more 

the important feature. As shown in table 3, the 

relative importance of each parameter was ranked as: 

IS > AS > CC > Zp > M% > MW. 

 

Feature Original R2 Reduced R2 R2 

diff 

Rank 

MW 0.996 0.990 0.006 6 

M%  0.978 0.017 5 

CC  0.893 0.103 3 

IS  0.572 0.424 1 

AS  0.698 0.298 2 

ZP  0.972 0.024 4 

Table.3. The difference and sorting of features in the MC-PLS model 

 

The individual size and aggregation size were the 

most crucial factors for acute cytotoxicity to human 

cells, indicating that the size effects of MeOx NPs in 

the range of 11–165 nm play an important role in 

cytotoxicity. As the particle size decreased, the 

increase of the number of atoms at the MeOx NP 

surface suggests that more atoms will be detached 

from the MeOx NP surface since there are fewer 
chemical bonds on the surface than the interior. This 

interpretation supports Mechanism I. 

Another valuable factor to elucidate the cytotoxicity 

of MeOx NPs is cationic charge. MeOx NPs with a 

low cationic charge usually have strong reductive 

properties, and the metal cation can easily detach 

from the surface of the MeOx NPs, which can 

enhance their cytotoxicity to A549 cells. This 
mechanism is consistent with Mechanism I of 

toxicity, as discussed above. Zeta potential is another 

important physicochemical feature in the cytotoxicity 

of MeOx NPs . 

Zeta potential represents the amount of charge on the 

particle surface, which is associated with the 

nanoparticle size. With a smaller particle size, the 

absolute value of the zeta potential increased, and the 

system tended to be stable. As the number of active 

sites on the surface increased and the cell response in 

the organism enhanced, MeOx NPs with opposite 

charges were adsorbed on the surface of cells. 

The transfer of electrons disrupted the potential 

balance and hindered the normal exchange of 

substances among cells. This process is consistent 

with Mechanism II. The mass fraction of metal 

elements and molecular weight of MeOx NPs also 
influenced the acute cytotoxicity of A549 cells. This 

is mainly because the metal elements induced the 

A549 cells to produce ROS, which then affected the 

acute cytotoxicity of the MeOx NPs. Through the 

above analysis, we deduced that the toxicity 

mechanism of MeOx NPs to A549 cells is the 

common function of Mechanisms I and II. Moreover, 

according to the MADS and the ROS experiments we 

found that Mechanism I is more dominant than 

Mechanism II. 

CONCLUSION: 

A Nano-QSAR was developed to predict the 

cytotoxicity of metal oxide Nano particles. The 
present study combines experimental testing and 

computational modelling methodologies to explain 
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the toxicity of Nano-metal oxides. The model was 

improved by use of additional structural parameter 

Z/r, which increase the accuracy of prediction. 

The metal oxide Nano particles (MeOxPs)were 

determined by biologic screening experiments to 

characterise the nanotoxicity of the nanoparticles. 

The improved SMILES-based optimal descriptors 

are employed to develop the corresponding nano-

QSAR  models for the risk assessment of MeOx 

NPs. 

Moreover, the effects of different characteristic 

physicochemical properties on their acute 

cytotoxicity and the mechanism were discussed. All 

the resulting R2 and Q2LOO values of the four 

developed models were above 0.8, while all the 

external validation coefficient, Q2Ext, values were 

above 0.7, indicating that all four developed models 
are reliable, stable, and with satisfactory predictive 

ability. Also, the applicability and reliability of the 

improved SMILES- based optimal descriptors for 

predicting the acute cytotoxicity of new MeOx NPs 

were verified. 

In addition, the effects of structure factors on the acute 

cytotoxicity of MeOx NPs revealed that the individual 

size and aggregation size were the most crucial 

physical factors influencing the acute cytotoxicity of 

MeOx NPs, followed by cationic charge and zeta 

potential, and the effects of both metal mass fraction 

and molecular weight were relatively weak. 

The results of the study suggest that Nano-QSARs 

can be a useful complementary method for hazard 
screening of MeONPs and their prioritization for 

further testing and risk assessment, and also provide 

information supporting the safer design of 

nanomaterials. 
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