

CODEN [USA]: IAJPBB ISSN: 2349-7750

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

https://doi.org/10.5281/zenodo.17443854

https://www.laips.com/volume1/volume1/2-october-2029/113-issue-10-october-25/

Available online at: http://www.iajps.com Review Article

EXPLORING THE THERAPEUTIC ROLE OF GLYCYRRHIZA GLABRA IN RESPIRATORY TRACT INFECTIONS: EFFICACY, MECHANISMS, AND SAFETY CONSIDERATIONS.

Pallavi S. Gore¹, Aditi V.Tikait², Dr. Swati P. Deshmukh³

¹Shraddha Institute of Pharmacy, Washim 444505., ²Assistant professor, Department of Pharmaceutics, Shraddha Institute of Pharmacy, Washim 444505., ³Principal, Department of Pharmacology, Shraddha Institute of Pharmacy, Washim 444505.

Abstract:

Respiratory tract infections (RTIs) are among the most widespread health concerns globally, contributing significantly to morbidity and mortality. The rising resistance to conventional antibiotics and antiviral drugs has intensified the search for alternative therapies, particularly those derived from natural sources with established safety and efficacy profiles. Glycyrrhiza glabra (commonly known as licorice or mulethi) is a well-known medicinal plant traditionally used in Ayurveda, Unani, and Traditional Chinese Medicine for managing respiratory conditions.(1) Its therapeutic potential is largely attributed to its bioactive constituents, such as glycyrrhizin, glycyrrhetinic acid, and liquiritin, which demonstrate antiviral, antibacterial, anti-inflammatory, antioxidant, and immunomodulatory properties.(2) Multiple preclinical and clinical studies support its effectiveness in alleviating symptoms associated with RTIs, including cough, sore throat, bronchitis, and asthma. While generally safe at therapeutic doses, overuse may lead to adverse effects like pseudoaldosteronism and electrolyte imbalances due to the mineralocorticoid-like action of glycyrrhizin.(3) This review provides a comprehensive overview of the pharmacological actions, mechanisms, and safety considerations of G.glabra, emphasizing its potential role as a natural, effective adjunct to conventional therapies in the prevention and treatment of respiratory tract infections.

Keywords: Glycyrrhiza glabra, Licorice, Respiratory tract infections, Antiviral, Anti-inflammatory, Antioxidant,

Safety, Pharmacology, Herbal medicine.(4)

Corresponding author:

Pallavi Shantaram Gore,

Shraddha Institute of Pharmacy,

Kondala Zambre, Washim 444505 E-mail:- pallavigore682@gmail.com

Please cite this article in press Pallavi Shantaram Gore et al., Exploring The Therapeutic Role Of Glycyrrhiza Glabra In Respiratory Tract Infections: Efficacy, Mechanisms, And Safety Considerations., Indo Am. J. P. Sci, 2025; 12(10).

INTRODUCTION:

Respiratory tract infections (RTIs) are among the most widespread causes of morbidity and mortality worldwide, affecting both upper (URTIs) and lower (LRTIs) parts of the respiratory system. URTIs include conditions like pharyngitis, laryngitis, and sinusitis, while LRTIs encompass more severe illnesses such as bronchitis, pneumonia, and asthma exacerbations.(5) The increasing emergence of antimicrobial resistance has significantly reduced the efficacy of conventional antibiotics and antiviral drugs, creating an urgent need for alternative, safer, and effective treatment options. In this context, traditional herbal medicines are gaining renewed scientific interest. Glycyrrhiza glabra L. (family Fabaceae), commonly known as licorice or mulethi,

has a long-standing history of use in traditional systems of medicine such as Ayurveda, Siddha, and Traditional Chinese Medicine. Revered "Yashtimadhu" in Ayurvedic texts, it is valued for its demulcent, expectorant, and anti-inflammatory properties, particularly in treating respiratory ailments like sore throat, cough, and hoarseness of voice.(6) Modern pharmacological research has validated these traditional uses, highlighting G. glabra's antiviral, antibacterial, anti-inflammatory, antioxidant, and immunomodulatory activities.(7) These findings position G. glabra as a promising candidate for managing RTIs. However, further studies are needed on standardization, pharmacokinetics, and clinical efficacy to support its integration into modern evidence-based therapies.(8)

Botanical Description:

- Scientific name: Glycyrrhiza glabra L.
- Family: Fabaceae (Leguminosae)
- Common names: Licorice, Mulethi, Yashtimadhu
- Plant part used: Roots and stolons(9)
- **Distribution:** Native to Mediterranean regions, cultivated in India, China, Iran, and Europe.(10)
- Morphology: Perennial herb with a deep taproot, pinnate leaves with 9–17 leaflets, and bluish- purple flowers arranged in racemes. Roots are long, cylindrical, yellowish-brown, and sweet in taste due to glycyrrhizin content.(11)

Fig 1. Glycyrrhiza glabra Plant Root

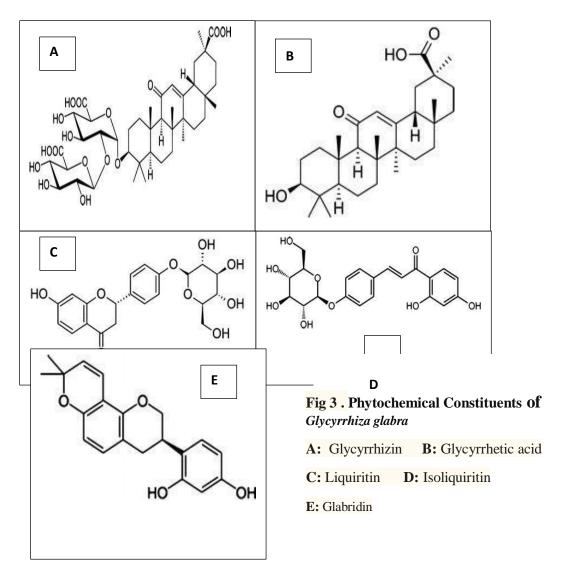


Fig 2. Glycyrrhiza glabra Plant

Phytochemical Constituents:

Glycyrrhiza glabra is rich in secondary metabolites responsible for its pharmacological properties:

- Saponins: Glycyrrhizin, glycyrrhetinic acid (major bioactives).(14)
- Flavonoids: Liquiritin, liquiritigenin, glabridin, isoliquiritigenin, and formononetin.
- Coumarins: Herniarin, umbelliferone.(15)
- Polysaccharides and tannins.
- **Essential oils and sterols:** β-sitosterol, stigmasterol.(16)

Mechanistic Insight:

Glycyrrhizin hydrolyzes to glycyrrhetinic acid, which exhibits strong anti-inflammatory and antiviral effects by inhibiting 11β -hydroxysteroid dehydrogenase and modulating immune responses. Flavonoids act as antioxidants and synergize to reduce oxidative stress in infected tissues. (18)

Mechanism of Action in Respiratory Tract Infections:

Pharmacological Action	Mechanism / Effect	Evidence
Antiviral	Inhibits viral replication, interferes with viral attachment and penetration (notably influenza, SARS-CoV, RSV)	In vitro studies show inhibition of SARS-CoV-2 and influenza virus(19)
Antibacterial	Disrupts bacterial cell wall and inhibits biofilm formation (S. pneumoniae, H. influenzae)	MIC studies confirmed bacteriostatic effect(20)
Anti-inflammatory	Suppresses cytokine storm by inhibiting NF-κB and COX-2 pathways	Shown to reduce IL-6, TNF-α levels(21)
Expectorant/ Demulcent	Soothes mucous membranes, promotes mucus secretion for easier expulsion	Traditional and experimental validation(22)
Immunomodulatory	Stimulates macrophage and lymphocyte activity, enhancing innate immunity	Demonstrated in murine models of infection(23)
Antioxidant	Neutralizes free radicals, protecting lung tissue from oxidative damage	DPPH and NO scavenging assays positive(24)

Pharmacological Efficacy Studies: Preclinical Studies:

- Glycyrrhizin demonstrated antiviral activity against influenza A virus and respiratory syncytial virus in vitro.(25)
- Glycyrrhetinic acid reduced lung inflammation in animal models of asthma and bronchitis.(26)
- Licorice extract inhibited bacterial growth of Staphylococcus aureus and Streptococcus pneumoniae.(27)

Clinical Studies:

- A polyherbal cough syrup containing G. glabra showed significant improvement in cough frequency and mucus clearance in patients with acute bronchitis.(28)
- Clinical evaluation of Yashtimadhu syrup in 100 patients revealed reduced sore throat and inflammation after 7 days.(29)
- Studies in COVID-19 patients demonstrated reduced viral load and faster recovery when licorice extract was used as an adjunct therapy(30).

Formulations and Dosage Forms:

• Common forms: Decoction, powder, syrup, lozenges, capsules, tablets, mouthwash.(31)

• Traditional formulations:

- Yashtimadhu Churna (powder for throat relief)
- Kantakari Avaleha (Ayurvedic respiratory tonic)
- Herbal cough syrups containing G. glabra.(32)
- Marketed examples: Mulethi
 Syrup, Dabur
 Honitus, Himalaya
 Koflet, Zandu

Yashtimadhu.(33)

• **Typical dose**: 1–3 g root powder twice daily, or 5–10 mL syrup thrice daily.(34)

Safety and Toxicity Profile:

Although G. glabra is generally safe, excessive consumption can lead to:

 Pseudoaldosteronism: Due to glycyrrhizin-induced inhibition of 11βhydroxysteroid dehydrogenase, causing sodium retention, hypokalemia, and hypertension.(35)

- Edema and electrolyte imbalance with chronic use.(36)
- Drug interactions: Caution with corticosteroids, antihypertensives, and diuretics.(37)
- Toxicity data: LD₅₀ of glycyrrhizin > 2000 mg/kg (rats).
- Recommendation: Safe up to 100 mg/day glycyrrhizin equivalent for adults under medical supervision.(38)

Pharmacokinetics:

- Glycyrrhizin is poorly absorbed orally and hydrolyzed by intestinal flora to glycyrrhetinic acid.(39)
- Peak plasma concentration reached within 2 hours post-ingestion.(40)
- Excretion mainly via bile and urine.
- Bioavailability increases in presence of fat or bile salts.(41)

Regulatory and Quality Control Aspects:

- Listed in Ayurvedic Pharmacopoeia of India, British Herbal Pharmacopoeia, and WHO Monographs.(42)
- Quality control includes assays for glycyrrhizin content (≥4%) and absence of contaminants.(43)
- Standardization based on HPLC or TLC fingerprinting profiles.(44)

Challenges and Future Prospects:

- Variability in glycyrrhizin content due to regional and extraction differences.(45)
- Need for standardized formulations and dose-response studies.
- Nanoformulation approaches (e.g., glycyrrhizin nanoparticles) for targeted pulmonary delivery.(46)
- Potential for combination therapy with antivirals for synergistic effects.(47)
- Requirement of large-scale randomized controlled trials to establish clinical efficacy and safety conclusively.(48)

CONCLUSION:

Glycyrrhiza glabra (licorice) has emerged as a promising medicinal plant in the management of respiratory tract infections (RTIs), offering a wide range of pharmacological actions, including antiviral, antibacterial, anti-inflammatory, antioxidant, and immunomodulatory effects. (49) Its historical use in traditional medicine systems such

as Ayurveda, Unani, and Traditional Chinese Medicine aligns well with modern scientific findings that validate its efficacy in treating conditions like cough, sore throat, bronchitis, and asthma. Given the escalating issue of antimicrobial resistance, G. glabra represents a valuable natural complementary alternative or option conventional treatments.(50) generally favorable safety profile supports its inclusion in herbal formulations; however, prolonged or excessive consumption may result in side effects like pseudoaldosteronism and electrolyte imbalance due to glycyrrhizin content. (51)To facilitate its acceptance and integration evidence-based medicine, further research is essential—particularly in areas of standardization, dosage optimization, pharmacokinetics, controlled clinical trials. With such advancements, G. glabra could play a significant role in future respiratory healthcare strategies.(52)

REFERENCES:

- 1. Wahab S, Annadurai S, Abullais S.S., Das G, Ahmad W, Ahmad M.F., et al. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants (Basel). 2021.
- 2. Banerjee S, et al. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: mechanisms and prospects. Frontiers / review. 2022.
- 3. He M-F., et al. Glycyrrhizin Inhibits SARS-CoV-2 Entry into Cells by Targeting ACE2. Frontiers in Pharmacology. 2022.
- 4. Cinatl J., Morgenstern B., Bauer G., et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003.
- Ameri A., Safa O., et al. Efficacy and safety of licorice (Glycyrrhiza glabra) in moderately ill patients with COVID-19: a randomized controlled trial. Inflammopharmacology / Springer. 2023.
- 6. Isbrucker R.A., Burdock G.A. Risk and safety assessment on the consumption of licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient emphasis on glycyrrhizin. Regulatory Toxicology and Pharmacology. 2006.
- Ceccuzzi G., et al. Liquorice Toxicity: A Comprehensive Narrative Review. Nutrients. 2023.
- 8. Fomenko V.V., et al. Synthesis and in-vitro study of antiviral activity of glycyrrhizin derivatives (Glicyvir). Molecules. 2022.
- 9. Yi Y., et al. Natural triterpenoids from licorice

- potently inhibit SARS-CoV-2 infection. Journal / Sci Direct. 2022.
- 10. Liu X., et al. Efficacy and safety of glycyrrhizic acid preparation (GAP) treating COVID-19: systematic review. Frontiers in Pharmacology. 2022.
- Alikiaie B., et al. Efficacy of licorice as adjunctive therapy in critically ill COVID-19 patients (D-reglis® tablet): clinical study. Journal of Research in Pharmacy Practice / JRPP. 2023/2024.
- 12. Barati S., et al. Evaluation of noscapinelicorice combination effects on cough and dyspnea in COVID-19 outpatients: randomized clinical trial. Frontiers in Pharmacology. 2023.
- 13. Rizvi Z.A., et al. Prophylactic treatment of Glycyrrhiza glabra mitigates SARS-CoV-2 infection and modulates immune response in animal models. Frontiers in Immunology. 2022.
- 14. Ishiuchi K., et al. Identification of glycyrrhizin metabolites and clinical risk factors of licorice- induced pseudoaldosteronism. Frontiers in Pharmacology. 2021.
- 15. Tian X., et al. Clinical efficacy and safety of glycyrrhizic acid preparation: systematic review and meta-analysis. BMJ Open. 2021.
- 16. Gomaa A.A., et al. Glycyrrhizin and boswellic acids potential nutraceuticals for COVID-19: clinical trial outcomes. Inflammopharmacology / Springer. 2022.
- 17. Mittal A., et al. Recent developments in the antiviral activity of glycyrrhizic acid and derivatives: review & mechanistic insights. Nanobioletters / review (2024).
- Ballin N.Z., et al. Glycyrrhizinic acid in licorice products on the Danish market content & consumer exposure. Food Chemistry / regulatory study. 2023.
- 19. EFSA Scientific Opinion: Safety and efficacy of glycyrrhizic acid European Food Safety Authority (EFSA) review. 2015.
- Nazari S., Rameshrad M., Hosseinzadeh H. Toxicological effects of Glycyrrhiza glabra narrative/toxicology review. Phytotherapy Research. 2017.
- 21. Chen Y., et al. Glycyrrhetinic acid suppresses cytokine storm induced by influenza infection in mice preclinical study. (Journal: Immunology / Virology).
- 22. Liao W., Wang T., Lin Y., et al. Clinical reports on glycyrrhizic acid preparation (GAP) in COVID-19 patients with liver injury: improved liver enzymes and

- inflammatory markers. (2020–2021 clinical series).
- 23. Zendejas-Hernandez U., et al. Nebulized glycyrrhizin/enoxolone inhalation: phase I/II study evaluating IL-17A modulation in COVID-19 clinical trial report. Frontiers in Immunology

/ 2024. CT04487964 ClinicalTrials.gov:

- Complementary intervention for
- 24. Bailly C., Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and associated respiratory syndrome? Pharmacology & Therapeutics. 2020.
- Li J., Wang X., et al. In silico ADMET and molecular docking searching for glycyrrhizin and related compounds as SARS-CoV-2 inhibitors. arXiv / computational study. 2020.
- 26. Ullah R., et al. Licorice extract: pharmacological profile, antiviral & antimicrobial activity review. Journal of Ethnopharmacology / review. (2020–2023).
- Bahramsoltani R., Farzaei M.H., Farzaei F., Abdollahi M. Medicinal plants and their constituents with antiviral and antiinflammatory properties in respiratory disorders: systematic review. Phytotherapy / review.
- 28. Li Y., et al. Licorice in prevention & treatment of COVID-19: review. Frontiers in Pharmacology. (2021–2022).
- Dang L., et al. Licorice: Comprehensive review of its chemical composition and pharmacology. Alternative & Complementary Medicine / review. 2024.
- 30. Ullrich S., et al. Glycyrrhizin derivatives as broad-spectrum antivirals: structural insights. Antiviral Research. (2008–2022).
- 31. Mahdian S., et al. Virtual screening of licorice compounds against SARS-CoV-2 targets computational docking & MD simulation. Computational Biology. 2021–2022.
- 32. Ranasinghe P., et al. Herbal medicine and respiratory diseases: current evidence and future prospects. Respiratory Medicine Review / 2020s.
- 33. Jeddi A., et al. The oral hydroalcoholic extract of licorice for treatment of COVID-19: clinical trial report (TUMS JPC). 2023.
- 34. Li J., et al. Glycyrrhizic acid preparations in liver disease and antiviral therapy: clinical experiences & mechanistic review. Hepatology / review. (2020–2022).

- 35. Research on glycyrrhizin metabolites and mechanism of pseudoaldosteronism: multiple papers (Japan/Kampo literature).
- 36. World Health Organization. WHO Monographs on Selected Medicinal Plants: licorice (Glycyrrhiza spp.) monograph. (WHO technical report series).
- 37. CIR Expert Panel Final Report: Safety assessment of glycyrrhizic acid and derivative: CQVIInel (glfstyrrhiziew). 2000 ellic acids) random
- 38. ResearchGate / Ji X., et al. A comprehensive review of licorice: preparation, chemical composition, bioactivities and applications (2024 preprint / comprehensive review).
- Nazari R., Rameshrad M., Hosseinzadeh H.
 Further toxicology insights reproductive
 and developmental safety of glycyrrhizin:
 review. Toxicology Letters / review.
- 40. Ballin NZ, et al. Surveillance study of glycyrrhizic acid levels in licorice products (market analysis, 2022–2023).
- 41. Sun Y., et al. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: review (licorice included). Food Chemistry. 2024.
- 42. Clinical case reports: severe hypokalemia and arrhythmia associated with high licorice intake multiple case reports (2000–2023). (Good to cite specific case reports in the paper.)
- 43. Pharmacokinetic studies: glycyrrhizin hydrolysis by intestinal bacteria to glycyrrhetinic acid; absorption, biliary excretion studies (several pharmacokinetic papers, 1990s–2020s).
- 44. Preclinical: animal studies of licorice extract in asthma and bronchitis models showing anti-inflammatory and bronchodilatory effects (e.g., 2010–2022 animal studies).
- 45. Preclinical: in vitro antibacterial activity of G. glabra extracts against Streptococcus pneumoniae and Haemophilus influenzae (microbiology reports).
- 46. Traditional medicine sources: Ayurvedic, Unani and TCM texts describing Yashtimadhu uses cite classical Ayurvedic pharmacopeia and TCM materia medica.
- 47. Pharmacopoeial entries: Ayurvedic Pharmacopoeia of India (Glycyrrhiza spp. monograph), British Herbal Pharmacopoeia (licorice), WHO monograph regulatory and quality control references.
- 48. Quality control / analytical methods: HPLC/TLC fingerprints and glycyrrhizin

- assay standard methods method papers (HPLC assay papers, 2005–2022).
- 49. Clinical trial: Complementary intervention NCT04487964 (glycyrrhizin + boswellia)
 - ClinicalTrials.gov registration & protocol.
- 50. Gomaa A.A., Abdel-Wadood Y., et al. Clinical trial outcomes of glycyrrhizin + boswellic acids in hospitalized COVID-19 trial publication & pilot data.
- 51. Recent 2024 review: Wu L., et al. "Glycyrrhiza, a commonly used medicinal herb: Review of species, pharmacology and biosynthesis" Journal / 2024 (covers biosynthesis and synthetic biology approaches).