

CODEN [USA]: IAJPBB ISSN: 2349-7750

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

https://doi.org/10.5281/zenodo.17477354

Available online at: http://www.iajps.com
Review Article

NASAL SPRAY FOR DECONGESTANT THERAPY

Akash A. Vikhar^{1*}, Shubham U Tikait², Dr. Swati P Deshmukh³

1*Student, Shraddha Institute of Pharmacy, Kondala Zambre, Washim, Maharashtra
 2Assistant Professor, Department of Pharmaceutics, Shraddha Institute of Pharmacy, Kondala Zambre, Washim, Maharashtra

³Principal, Department of pharmacology, Shraddha Institute of Pharmacy, Kondala Zambre, Washim, Maharashtra

Abstract:

Nasal spray formulations have emerged as a reliable, non-invasive, and rapid-acting alternative for decongestant therapy. The common cold has no known cure, and the only way to treat nasal congestion is with symptomatic medications. The nasal route offers both local and systemic drug delivery advantages, including avoidance of first-pass metabolism, rapid onset of action, and high patient compliance. Nasal sprays are preferred over drops or powders due to better dose precision and patient acceptability. However, limitations include limited absorption for large or polar drugs, mucosal irritation risks, enzymatic degradation, and volume constraints. Continuous improvements in formulation technology, such as preservative-free systems and mucoadhesive agents, promise enhanced safety and therapeutic performance in future nasal drug products. **Keywords:** Nasal cavity, Anatomy, Absorption, mechanism, challenges, Adv, Dis, Application.

Corresponding author:

Akash A. Vikhar,

Student, Shraddha Institute of Pharmacy, Kondala Zambre, Washim, Maharashtra

Please cite this article in press Akash A. Vikhar et al., Nasal Spray For Decongestant Therapy, Indo Am. J. P. Sci, 2025; 12(10).

INTRODUCTION:

It is acknowledged that intranasal drug administration is a practical and dependable substitute for parenteral and oral methods. Both local and systemic medication administration are possible with the nasal route. For example, nasal cavity disorders such congestion, rhinitis, sinusitis, and associated allergy diseases are typically treated with localized nasal medication delivery.

More focus has recently been placed on exploiting the nose as the body's entrance point to achieve a systemic medication activity. Additionally, nasal distribution appears to be a good method of getting across the (BBB) blood-brain barrier, enabling direct drug delivery in the biophase of substances that are active in the central nervous system. The nasal spray dosage form has a good patient compliance rate since it is affordable, portable, and self-administrable. As a result, nasal drug delivery has gained popularity as a drug administration method and has significant room for expansion.

Acute rhinosinusitis caused by bacteria or viruses can also result in nasal congestion. Allergy prevalence has increased worldwide, with rates of AR ranging from 1 to 18% This has contributed to the emergence of the so-called "allergy epidemic" of the twenty-first century and may be caused by genetic, lifestyle, and environmental factors.

The common cold has no known cure, and the only way to treat nasal congestion is with symptomatic medications.

Nasal Anatomy

• Gross compartments: Each side of the nose forms a nasal cavity separated by the nasal septum; posteriorly both open into the choanae → nasopharynx.

• Regions:

- Vestibule just inside nostrils; lined by skin with coarse hairs (vibrissae).
- o Respiratory region largest area, lined by pseudostratified ciliated columnar epithelium with goblet cells and glands. Responsible for mucus secretion and MCC.
- o Olfactory region superior part (olfactory cleft) containing olfactory receptor neurons, sustentacular/supporting cells and basal (stem) cells.
- Bony framework & turbinates: Lateral walls bear superior, middle and inferior conchae (turbinates) increase surface area and create turbulent flow to improve conditioning and particle deposition.
- Blood supply & innervation: Rich vascular supply (sphenopalatine, anterior ethmoidal, superior labial branches) → important for humidification and for common epistaxis sites. Sensory innervation: trigeminal; olfactory nerve (CN I) for smell.[5]

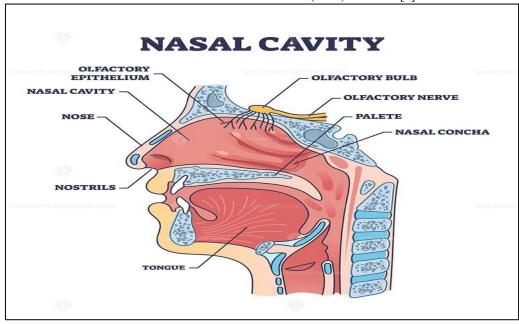


Fig.1 Anatomy of nose

Physiology:-

- Air conditioning: Large mucosal surface, rich vasculature and turbulent flow across turbinates warm and humidify air preserving airway mucosa and optimizing gas exchange.
- Filtration & mucociliary clearance (MCC): Mucus traps particles and cilia transport mucus toward the nasopharynx (or anteriorly) first line mechanical defense. MCC rate varies by region and can be altered by drugs, disease, age.
- Olfaction: Odorants transported to the olfactory epithelium (olfactory cleft); olfactory receptor neurons transduce chemical signals to the olfactory bulb.
- Nasal cycle & vascular dynamics: Alternating partial congestion of turbinates (nasal cycle) changes resistance and airflow distribution; autonomic control of mucosal blood flow modulates this.
- Immunologic roles: The mucosa is immunologically active (mucus, antimicrobial peptides, immunoglobulins, resident immune cells) key for innate defense and shaping adaptive responses to inhaled antigens.

Formulation of Nasal Spray:-

Components — what to include and why

- 1. Active
 - Oxymetazoline HCl 0.05% w/v (0.5 mg/mL) common OTC strength.
 - O Xylometazoline HCl 0.05% w/v (or up to 0.1% for some products).[9]

2. Buffer system (pH control)

 Common buffers: phosphate (NaH2PO4/Na2HPO4) or citrate systems. Patents and formulations often use phosphate to target pH 3-6.

3. Tonicity agent

- Sodium chloride to ~0.9% for isotonic solution; some formulations use 0.5% NaCl for mild hypotonicity (improves uptake for some actives) test comfort and mucociliary clearance.
- **4. Preservative** (if multi-dose non-sterile presentation)
 - o Benzalkonium chloride (BKC) (typical 0.01% w/v) effective, widely used, but has literature reporting mucosal effects with chronic use; weigh pros/cons. Alternatives: potassium sorbate, phenoxyethanol, or preservative-free unit dose pumps.

- 5. Viscosity / mucoadhesive agents (optional to increase residence time)
 - Low-level (hypromellose) or Carbopol (very low %), HA (hyaluronic acid), iota-carrageenan, CMC or Poloxamer for in-situ gelling. These increase contact time and may reduce dosing frequency;

6. Humectants and cosolvents

Glycerin (2-5% w/v), PEG 400 (small %) — improve spray feel and reduce stinging for some APIs. Keep cosolvents low to avoid altering spray device performance.

7. Antioxidants / chelators (if needed)

- o **EDTA** (chelating agent) can stabilize trace-metal sensitive APIs and may boost preservative efficacy at low levels (e.g., 0.01–0.05%). Test for compatibility.
- **8.** Water for injection (WFI) for sterile or aseptic processing when required.

❖ Mechanism of action :-

- Oxymetazoline hydrochloride (nasal decongestant spray)
 - Oxymetazoline is a topical α-adrenergic receptor agonist (primarily α₁, possibly α₂) on the smooth muscle of blood vessels in the nasal mucosa
 - . Types of Nasal Drugs Delivery Spray:-
- 1. Nasal drops and sprays

The most straightforward and practical method created for nasal administration is nasal drops. According to reports, nasal drops are more effective than nasal sprays at depositing human serum albumin in the nostrils.

2. Nasal gels

Nasal gels are thickened liquids or suspensions with a high viscosity. A nasal gel's benefits include reducing postnasal drip from its high viscosity, reducing taste impact from swallowing less.

Advantages of Nasal Drug Delivery System

- Drugs absorbed orally can be delivered to systemic circulation by means of nasal drugs delivery.
- Hepatic first pass metabolism is avoided.
- Easy accessibility.
- Self- medication is possible.

Disadvantages of Nasal Drug Delivery System

- Nasal cavity provides smaller absorption surface area when compared to GIT.
- Relatively inconvenient to patient who compared oral delivery system since there is possibility of irritation.
- There is a risk of local side effects and irreversible damage of the cilia on

the nasal mucosa, both from the substance and from constituents added to the dosage form.

Mechanism of drug absorption through nose

Drugs absorbed from the nasal cavity pass through the mucus layer it is the initial step towards absorption. This layer allows small layer, uncharged medications to flow easily, but larger, charged substances struggle to do so. Drug absorption through the nose occurs via two processes.

• Paracellular transport

Transferring chemicals across the epithelium involves going via intercellular gaps between cells. This aquatic transport method is slow and passive. [19]

• Transcellular transport

It is described as the movement of solutes within a cell. Transport via a lipoidal membrane is involved. It is a carrier-mediated active transport method.[20]

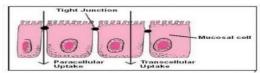


Fig.2 Mechanism of absorption

Barriers of Nasal absorption

• Low bioavailability

Lipophilic drugs are generally well absorbed from the nasal cavity compared to polar drugs. It is due to low membrane permeability.

• Low membrane transport

Rapid clearance of the administered formulation from the nasal cavity due to the mucociliary clearance mechanism.

Enzymatic Degradation

Low transport of especially peptides and proteins across the nasal membrane is the possibility of an enzymatic degradation of the molecule either within the lumen of the nasal cavity or during passage across the epithelial barrier by exopeptidase and endopeptidase.

Formulation of nasal spray

Nasal spray drug products contain therapeutically active ingredients (drug substances) dissolved or suspended in solutions or mixtures of excipients (e.g., preservatives, viscosity modifiers, emulsifiers, buffering agents) in no pressurized dispensers that deliver a spray containing a metered dose of the active ingredient.

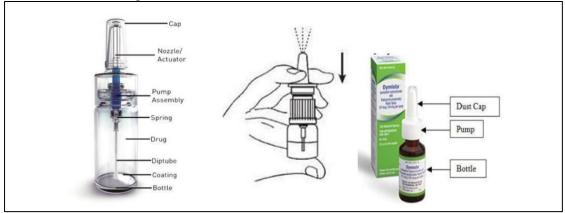


Fig.3 Nasal Sprays

Table 1: Commonly utilized Excipients

Category	Role	Example	IIG limits for nasal
			sprays (%w/w)
Tonicity Adjusting agent	Used as adjust tonicity of	NaCl, Anhydrous	0.9
	formulation	Dextrose	0.5
pH Adjustment	Use to adjust pH same to	Sodium hydroxide,	0.004
	physiological conditions	Sulphuric acid,	0.4
	and maximize drugs	Hydrochloride acid	
	stability	-	
Purging	Used to reduce oxidation	Butylated hydroxyl	0.01
		toluene	
		Butylated hydroxyl	0.0002
		anisole	
Antimicrobial	To avoid microbial	Benzyl alcohol	0.0366
preservative	growth in the	Benzalkonium chloride	

	formulation	Chlorobutanol Propylene glycol	0.119 0.5
			20
Buffer component	It gives buffer capacity to	Anhydrous trisodium	0.0006
	formulation at desired	citrate	
	pН		
Surfactant	Increases viscosity and	CMC-Na	0.15
	suspendability of		
	suspension		
Cation chelating agent	Forms chelate with ions	Disodium EDTA	0.5
	present in formulation		
	and increases stability		
Suspending agent	Increase viscosity and	CMC-Na	0.15
	suspendability of		
	suspension		
Co-solvent	Helps to improve	Alcohol	2
	solubility	PEG 400	20
		Propylene glycol	20
Humectant	Used to maintain	Glycerin	0.233
	humidification in		
	formulation		

Challenges of Nasal Drug Delivery

Nasal geometry and site of drug deposition

Nasal drug delivery system is more effective for local action, systemic action, and central nervous system action, at lower doses with minimum side effects. However, delivering drug to the specific regions is challenging.

Mucociliary clearance

It plays an important role in therapeutic activity of drug in posterior nasal cavity so that absorption occurs more quickly.

Other challenges are as follows:

- Drug diffusion through mucus layer and transport across respiratory epithelial membrane.
- Potential degradation by extracellular and intracellular enzyme systems.

Majority of nasal formulations are prepared by use of active pharmaceutical ingredient (API) and various excipients like preservatives, suspending agents, emulsifiers, buffering agents etc.

Characterization of Nasal Sprays

рΗ Osmolality Viscosity

Spray Content Uniformity (SCU)

Applications

Delivery of non-peptide pharmaceuticals Delivery of peptide-based pharmaceuticals Delivery of Drugs to Brain through Nasal Cavity

Delivery of Vaccines through Nasal Route

Quality Control (QC) Tests 1. Organoleptic Evaluation

Purpose:

To assess the appearance, odor, and

clarity of the nasal spray formulation to ensure uniformity and acceptability.

Procedure:

- Visually inspect the solution under white light for color, clarity, and absence of particulate matter.
- Evaluate odour using a trained panel (2–3 analysts).
- Note any phase separation or precipitation. **Typical Acceptance Criteria:**
- Clear, colourless or slightly coloured liquid.
- Odour should be characteristic and acceptable (no foul smell).
- No turbidity or particulate matter visible.

2. pH Determination Purpose:

To ensure compatibility with nasal mucosa and stability of the drug substance.

Procedure:

- Use a calibrated digital pH meter.
- Measure the pH of the formulation at room temperature (25 °C).
- Perform in triplicate and calculate mean \pm

Typical Acceptance Criteria:

- pH between 4.5 and 6.5 (compatible with nasal mucosa).
- No significant deviation during stability testing.

Example Reading:

Batch	pH (Mean ± SD)		
A	4.62 ± 0.02		
В	4.59 ± 0.01		
С	4.70 ± 0.02		

3. Spray Pattern

Purpose:

To confirm that the spray forms a uniform and symmetrical pattern ensuring dose reproducibility.

Procedure:

- Hold the nasal spray 30 mm away from a paper sheet.
- Actuate 3–5 times.

Example Reading:

- Measure the diameter and shape using image analysis or laser light projection.
- Calculate circularity or aspect ratio. Typical Acceptance Criteria:
- Circular spray pattern (no streaking or tails).
- Diameter between 20–25 mm at 30 mm distance.
- Circularity index > 0.9.[35,36]

Actuation	Diameter (mm)	Circularity
1	22.5	0.95
2	23.0	0.96
3	22.8	0.95

4. Droplet Size Distribution

Purpose:

Determines particle size to predict drug deposition in the nasal cavity.

Procedure:

- Use Laser Diffraction Analyzer (e.g., Malvern Spraytec).
- Measure Dv10, Dv50, Dv90 (droplet size percentiles).
- Calculate SPAN = (Dv90 Dv10) / Dv50 to assess uniformity.

Typical Acceptance Criteria:

- Dv50 (median droplet size): 40–60 μm
- SPAN: < 2.0 (indicates narrow size distribution)[33]

Example Reading:

Actuation	Dv10 (μm)	Dv50 (μm)	Dv90 (μm)	SPAN
1	24.8	54.6	110.3	1.57
2	25.1	55.2	111.0	1.56
3	24.9	55.0	110.7	1.56

5. Sterility / Microbial Limit Testing

Purpose:

Ensures that nasal spray is free from harmful microorganisms, especially for aqueous formulations.

Procedure:

- Perform Sterility Test (USP <71> or IP 2021) by membrane filtration or direct inoculation.
- Incubate in Fluid Thioglycollate Medium (FTM) and Soybean Casein Digest Medium (SCDM) for 14 days at 30–35 °C and 20–25 °C respectively.
- Observe for microbial growth.

For preserved multi-dose sprays, perform Preservative Efficacy (Challenge Test) against:

Typical Acceptance Criteria (per USP <51>):

- $\geq 3 \log \text{ reduction by } 14 \text{ days for bacteria}$,
- ≥ 1 log reduction for fungi by 14 days.[32]

Example Reading (log10 CFU/mL):

Organism	Day 0	Day 7	Day 14	Day 28	Log Reduction
		,		,	(28)
S. aureus	6.0	2.1	1.5	1.2	4.8
P.aeruginosa	6.0	2.5	2.0	1.8	4.2
C.albicans	6.0	4.8	4.5	4.2	1.8

Available Nasal Spray Products in the Market

Otrivin is one of the most commonly used nasal decongestant sprays. It contains *Oxymetazoline Hydrochloride* at a concentration of 0.05% w/v in an aqueous buffered vehicle, often preserved with *Benzalkonium Chloride* (0.01% w/v).

Fig.4 Otrivin oxy nasal spray

Nasivion is another widely marketed nasal spray containing $Oxymetazoline\ Hydrochloride\ 0.05\%\ w/v$ as the active ingredient. It provides quick and effective relief from nasal congestion caused by colds, sinusitis, and allergic rhinitis.

Fig.5 Nasivion Nasal drop

Vicks Sinex nasal spray also contains Oxymetazoline Hydrochloride 0.05% w/v as the active component. It is indicated for the temporary relief of nasal congestion due to the common cold, sinusitis, or allergies. The product is available in medicated and saline variants, such as Sinex Severe and Sinex Ultra-Fine Mist.

Fig.6 Vics Sinex nasal spray

Summery

The review discusses nasal sprays as an effective drug delivery system, primarily for treating nasal congestion and related respiratory conditions. The nasal route offers both local and systemic drug delivery advantages, including avoidance of firstpass metabolism, rapid onset of action, and high patient compliance. The anatomy and physiology of the nasal cavity—especially its vascularity, surface area, and mucociliary clearance—make it a favorable site for drug absorption. Formulation components of nasal sprays typically include active agents such as Oxymetazoline Hydrochloride or Xylometazoline Hydrochloride, buffers for pH control, tonicity agents like sodium chloride, preservatives, viscosity enhancers, humectants, and antioxidants. Each excipient plays a role in optimizing stability, comfort, and therapeutic efficiency. Mechanistically, oxymetazoline acts as an α-adrenergic agonist, producing vasoconstriction in nasal mucosa to relieve congestion. Nasal sprays are preferred over drops or powders due to better dose precision and patient acceptability. However, limitations include limited absorption for large or polar drugs, mucosal irritation risks, enzymatic degradation, and volume constraints.

CONCLUSION:

Nasal spray formulations have emerged as a reliable, non-invasive, and rapid-acting alternative for decongestant therapy. Their design allows targeted delivery to the nasal mucosa, resulting in efficient drug absorption and immediate symptomatic relief. Despite their benefits, proper usage and adherence to recommended duration (generally not exceeding five to seven days) are

crucial to prevent adverse effects such as rebound congestion and mucosal irritation.

Overall, nasal sprays represent a valuable advancement in pharmaceutical drug delivery, combining convenience, efficacy, and patient compliance. Continuous improvements in formulation technology, such as preservative-free systems and mucoadhesive agents, promise enhanced safety and therapeutic performance in future nasal drug products.

REFERENCES:

- 1) Sharma PK Choudhari P, Kolsure P, Ajab A, Varia N. Recent trends in nasal drug delivery system an overview. 2006; 5(4), 56-69
- 2) Naclerio RM, Bachert C, Baraniuk JN. Pathophysiology of nasal congestion. Int Med 2010;3:47-57
- 3) Taverner D, and Latte J. Nasal decongestants for the common cold. Cochrane Database Syst Rev;1 CD001953, 2007.
- 4) Debjit Bhowmik, Rakesh Kharel, Jyoti Jaiswal, Chiranjib, Biswajit and K.P. Sampath Kumar for Innovative approaches for nasal drug
- 5) 5.S. Caleb Freeman, David A. Karp; I.Kahwaji for Physiology of, Nasal
- 6) Akshay S. Sidam, Piyush G. Paifhan, Komal V. Shinde, Dr. Nilesh O Chachda, Khushi M. Kongre for " A Comprehensive Review on Oxymetazoline Hydrochloride as Nasal Spray.
- A Akerlund , K E Arfos , M Bende, M Intaglietta for Effect of oxymetazoline on nasal and sinus mucosal blood flow ijnthe rabbit as measured with laser dropper flowmetry.
- 8) Emmeline Marttin , Nicolas G.M Schipper, J.Coos Verhoef, Frans W.H.M Merkus for

- Nasal mucociliary clearance as a factor in nasal drug delivery
- 9) Christine Graf, Andreas Bernkop- Schnutch, Alena Egyed, Christine Koller, Eva Prieschl -Grassauer , Martina Morokutti- Kurz for development of nasl spray containing Xylometazoline hydrochloride and iotacarrageenam for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis.
- 10) Bradley Marple, Peter Roland, Michael Benninger for Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions.
- 11) Vitthal Kulkarni and Charles Shaw DPT Laboratories Ltd for An examination of nasal spray formulation parameters and excipients and their influence on key in vitro tests.
- 12) Chrystalla Protopapa , Angeliki Siamidi , Panagoula Pavlaou, Marilena Vlachou for Excipients Used for Modified Nasal drug Delivery: A mini -Review of the Recent Advances
- Zainab Jassim E , Entidhar Al-Amkam J. Drugs Invention Today , 2018 ; 12(1):2860-2861
- 14) Thorat S. Scholars Journal of applied medical science s(SJAMS), 2016; 4(8D): 2980-2981.
- 15) Md. Meddi H, Md. Mizanur R, lutfulkabir AK, Ghosh AK, Mahbub H, Md. Salimul K, Harun R. International journal of Pharmacy and therapeutics ,2016;7(4):190-192
- 16) Patil VB, Kalkotwar RS, Patel A, Tathe S, Jadhav VB. Journal of drug delivery and therapeutics, 2012; 2(4):1-3
- 17) Md. Mehdi H, Md. Mizanur R, lutfulkabir AK Ghosh AK, Mahbub H, Md. Salimul K, Harun R. International journal of pharmacy and therapeutics, 2016; 7(4):195-196.
- 18) Karpagavalli L, Gopalasatheeskumar K, Narayanan N, Isakki RA, Hari PJ, Janarthanan S. World journal of pharmaceutical research, 2017; 6(2):402-403.
- 19) Alagusundaram M, Chengaiah B, Gnanaprakash K, Ramkanth S, Madhusudhana C, Dhachinamoorthi D. International journal of research in pharmaceutical sciences, 2010; 1(4): 461-462
- 20) Ramesh RP, Mahesh C, Patil O, e-journal of science and technology, 2009; 3:1-21
- 21) Davis SS, Illum L. clinical Pharmacokinetics 2003; 42(13):1107-1128
- 22) Arora P, Sharma S, Garg S. Drug Discovery Today, 2003;7(18):967-975.
- 23) Chaturvedi M, Kumar M Pathak K. Journal of Advanced Pharmaceutical Technology and Research, 2011; 4:215-222

- 24) Dhakar RC, Maurya SD, Tilak VK, Gupta AK. International journal on Drug Delivery, 2011; 3:194-208
- 25) Brain JD, Valberg PA, Am Rev Respir Dis., 1979;1(20):1325-1373.
- Behl CR, Pimplaskar HK, Sileno AP, Xia WJ, Gries WJ, deMeireles JC, et al. Adv Drug Delivery Rev. 1998;29:117-133
- Foo MY, Cheng YS, Su WC, Donovan MD. J Aerosol MD., 2007;20:495-508.
- 28) Md. Mehdi H, Md Mizanur R, lutfulkabir AK, Ghosh AK, Mahbub H, Md Salimul ka, Harun R. International journal of pharmacy and therapeutics, 2016;7(4):190-192
- Boukarin C, AbouJs, Bahnam R, Barada R, KyriacosS. Drug Test Anal., 2009; 1:146-148
- 30) Brain JD, Valberg PA. Am Rev Respir Dis., 1979;120:1325-1373
- 31) Patel , D.,and Patel M, (2014). Formulation and evaluation of Nasal Spray of Antihistaminic Drug. Int.J. Pharm.Sci.Rev.,27(1),74-80.