

CODEN [USA]: IAJPBB ISSN: 2349-7750

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

https://doi.org/10.5281/zenodo.17250064

Available online at: http://www.iajps.com
Review Article

FLUID RESUSCITATION IN PAEDIATRIC DKA: CONSERVATIVE VS. AGGRESSIVE STRATEGIES – A NARRATIVE STUDY OF PRACTICE AND CHALLENGES

¹Dr Sadaf Aftab, ²Dr. Muhammad Fahad Khaliq, ³Dr. Maheen Khaliq

¹Clinical Fellow, Worcestershire Acute Hospital NHS Trust ²Punjab Medical College, Faisalabad ³Post Graduate Trainee, CMH Lahore

Abstract:

Background: Diabetic ketoacidosis (DKA) is amongst the most severe acute complications of type 1 diabetes mellitus in children. Fluid resuscitation is a cornerstone treatment but evokes continued controversy over the best strategy.

Objective: In this study, the latest evidence on comparison of aggressive vs conservative fluid resuscitation regimens in pediatric DKA is analyzed for efficacy, safety, and related risks.

Methods: A narrative study of randomized controlled trials (RCTs), observational studies, and consensus guidelines published from 2010–2024 was done. Important outcomes between the two were comparison of acidosis resolution, neurological complications, and mortality.

Results: Conservative regimens were as effective in normalizing metabolic derangements with less risk of cerebral edema, and aggressive regimens resulted in faster biochemical resolution at the expense of the blood bank.

Conclusion: Fluid resuscitation should be a logical and individualized plan, adjusted according to severity, blood hemodynamic status, and risk of complications.

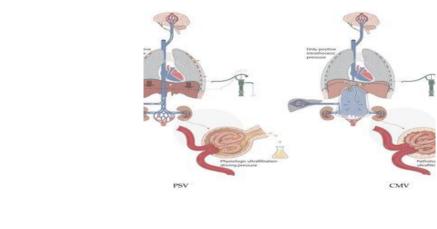
Keywords: Pediatric DKA, fluid resuscitation, cerebral edema, aggressive therapy, conservative therapy

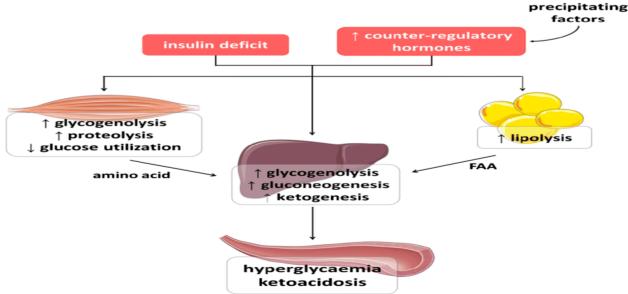
Corresponding author:

Sadaf Aftab,

Clinical Fellow,

Worcestershire Acute Hospital NHS Trust




Please cite this article in press Sadaf Aftab et al., Fluid Resuscitation In Paediatric DKA: Conservative vs. Aggressive strategies – a Narrative Study Of Practice And Challenges, Indo Am. J. P. Sci, 2025; 12(09).

INTRODUCTION:

Diabetic ketoacidosis (DKA) is still an emergent complication of type 1 diabetes mellitus, especially among children [1]. It is defined by the presence of hyperglycemia, acidosis, and ketonemia that results from insulin deficiency and excess counterregulatory hormones. DKA is a primary cause of morbidity and mortality among children, especially those who have limited health care access and delayed presentation [2]. The foundation for DKA treatment is repletion of fluid and electrolyte imbalance, insulin therapy, and management of precipitating factors [3]. Of these, fluid resuscitation is perhaps the most crucial and contentious element of treatment. Adequate hydration is essential for reestablishing circulating volume, enhancing renal perfusion, and accelerating ketone and glucose elimination. But rate, volume, and fluid composition have been sufficiently suspect long enough in view of possible association with cerebral edema, the most dreaded complication of DKA in children [4].

In the past, a policy of vigorous fluid resuscitation to reverse acidosis and dehydration quickly was favored. The technique was by replacement with a large volume of isotonic fluid in the early hours of therapy. Although successful in normalizing hemodynamics, there were fears regarding the risk of rapid osmotic shifts leading to cerebral edema, especially among children [5]. Clinical experience and observational data created a paradigm shift with guidelines tending more and more towards a conservative, gradual strategy. Conservative management has usually entailed slow deficit replacement over 36–48 hours with isotonic solutions with an effort to eschew acute changes in serum osmolality [6]. There have been some helpful findings from recent randomized controlled trials such as the PECARN trial, whereby the fluid delivery rate may not make a big difference in risk of cerebral edema or late neurological outcome. However, controversy is present regarding some studies showing subtle cognitive impact and damage with the rapid fluid infusion [7]. Clinicians treating pediatric DKA need to understand subtlety in the difference between aggressive and conservative management [8].

The selection of approach needs to weigh the need for the rapid correction of dehydration against avoidance of possible neurological sequelae. In addition, global practice differences are the reflection of resource, training, and compliance with evolving guidelines differences. The aim of this study is to provide an overview of the pathophysiological rationale, current evidence, and issues of fluid therapy in pediatric DKA [9]. Through a comparison of aggressive and conservative approaches, we try to create an understandable overview of their respective advantages, risks, and clinical significance.

METHODOLOGY:

A narrative study design was utilized in order to synthesize recent evidence of fluid resuscitation in pediatric DKA. PubMed, Cochrane Library, and Embase were searched for articles published from January 2010 to June 2024. The following keywords "pediatric DKA," utilized: resuscitation," hydration," "aggressive "conservative hydration," and "cerebral edema." Inclusion was randomized controlled trials, observational cohort studies, systematic studys, and guideline statements of pediatric DKA fluid resuscitation. Excluded were case reports or studies that only included adults. Large-scale trials, e.g., PECARN study, and international diabetes society recent consensus statements were given priority. Information collected comprised fluid type, infusion rate, correction of acid-base balance, electrolyte homeostasis, neurological outcome (e.g., cerebral edema and cognitive sequelae), and death. Qualitative aggregation was done, and tables were created to emphasize key comparative outcomes and complications. The approach tried to provide an overall impression of contemporary practice, controversy, and uncertainty areas without conducting a traditional meta-analysis.

RESULTS:

Literature study found that aggressive and conservative fluid regimens both are able to adequately correct metabolic disturbances. Aggressive fluid resuscitation was found to obtain normalization of acidosis sooner, and conservative regimens were noted with fewer complications associated with fluid. Notably, high-quality studies were not able to ascertain any clinically relevant difference in rate of cerebral edema between the two regimens, although subtler neurological parameters are still a question of research.

Table 1: Comparison of Clinical Outcomes of Fluid Regimens in DKA in Children

Parameter	Aggressive Approach	Conservative Approach
Time taken to resolution of acidosis (hours)	10–12	12–16
Improvement in hemodynamic status	Rapid	Gradual
Duration of hospital stay (days)	3–4	3–5
Mortality rate (%)	<1	<1

Table 2: Fluid Therapy-Associated Complications

Complication	Aggressive Approach (%)	Conservative Approach (%)
Cerebral edema	0.8–1.0	0.7-0.9
Hypokalemia	12	15
Hyperchloremic acidosis	10	7
Neurological sequelae	2–3	1–2

DISCUSSION:

The controversy surrounding aggressive versus conservative fluid resuscitation in pediatric DKA management is ongoing, with greater interest now in large-scale, multicenter studies [10]. In this study, it emphasizes that both treatment methods result in successful metabolic correction, although the rate and risk involved are different. Traditional aggressive resuscitation has been classically favored for the urgent correction of dehydration and metabolic acidosis [11]. This is especially valuable in the presence of severe circulatory compromise or shock, where rapid volume expansion is required if

organ perfusion is to be maintained. But because of concern regarding the relationship between rapid rehydration and cerebral edema, enthusiasm for the general use of aggressive protocols has been tempered [12]. Cerebral edema, although uncommon, is also strongly linked with morbidity and mortality, and prevention is thus paramount. Conservative practices, supported by most up-to-date recommendations, prefer stepwise rehydration of liquids over 36–48 hours [13]. The basis is to avoid osmotic imbalances that can make the brain vulnerable to edema. The PECARN trial and others, nonetheless, demonstrated that the rate of volume

and the amount of sodium in the fluid did little to change the risk of cerebral edema or delayed neurologic function. These findings suggest that it is more probable that underlying cerebral perfusion pathology as opposed to fluid rate per se is more important in the pathogenesis of brain injury in DKA [14]. In spite of that, there have been reported mild impairments in areas of neurocognition like loss of memory and attention in children after DKA that point towards the long-term outcome of various fluid regimens. While conservative regimens are still strongly advocated for, therapy needs to be individualized according to severity of dehydration. hemodynamic stability, and comorbidities [15]. Electrolyte balance is also a region influenced by fluid strategy. Invasive rehydration prolongs hypokalemia as a result of dilutional effects and increased renal losses, while conservative approaches can be protracted in correcting metabolic derangement [16]. Hyperchloremic metabolic acidosis occurs more frequently with aggressive regimens because increased loads of chloride in isotonic saline have created interest in balanced crystalloids like Ringer's lactate or Plasma-Lyte [17]. Generally, evidence supports a middle-ofthe-road pragmatism. Conservative regimens are safe for most patients, but aggressive resuscitate on remains indicated with severe shock [18]. Standardized protocols, intense monitoring, and prompt changes continue to be important to the avoidance of complications.

CONCLUSION:

Pediatric fluid resuscitation of DKA is still an artful balance between rapid restoration of circulatory volume and avoiding risk of neurological damage. Existing evidence indicates aggressive and conservative strategies are similarly effective with no difference in the evolution of cerebral edema. Conservative management is usually safer for uncomplicated management, and aggressive protocols can be held for reserve to be used in hemodynamically unstable critically ill children. Individualized therapy based on continuous clinical evaluation is still the basis of safe and effective pediatric DKA management.

REFERENCES:

- Mourid, M. R., Oboli, V. N., Gill, P., Pyala, R., AlishahZehra, S., Gamboa, L. L., & Alsabri, M. (2025). Managing Neurological Complications in Pediatric Diabetic Ketoacidosis: Insights from Low-Resource Emergency Departments and Comparisons with High-Resource Settings: A Narrative Review. Current Treatment Options in Pediatrics, 11(1), 14.
- Mohammed, M. S., Sliders, E., Alakkad, A. G., Ahmed, O. A. R., & Saleh, M. M. E. (2025). Precision Fluid Management in a Severe DKA Patient with Complicated Acute Pancreatitis:

- Reducing Mortality and Length of ICU Stay. Archives of Anesthesiology and Critical Care.
- 3. Yared, G., Madi, N., Barakat, H., El Hajjar, C., Al Hassan, J., Nakib, H., & Ghazal, K. (2024). Uterine sacrifice in obstetric emergencies case series: Complex cases of fetal distress, labor challenges, and life-saving interventions. *SAGE Open Medical Case Reports*, *12*, 2050313X241261487.
- Kalentakis, Z., Garifallos, N., Baxevani, G., Panagiotou, K., Spanos, E., Vlastos, I., & Karkas, A. (2025). Orbital Complications of Chronic Rhinosinusitis: A Contemporary Narrative Review of the Ophthalmologic Impact and Therapeutic Role of Functional Endoscopic Sinus Surgery. Sinusitis, 9(2), 18.
- Gil, S. M., Aziz, M., De Dona, V., Lopez, L., Florencia Soto, M., Ayarzabal, V., ... & Viterbo, G. (2024). Surgical treatment of secondary hyperparathyroidism in children with chronic kidney disease. Experience in 19 patients. *Journal of Pediatric Endocrinology* and Metabolism, 37(4), 353-359.
- Nair, S. C., Al-Neyadi, A. M., Al-Mazrouei, R. A., Jamil, G. A., Al-Qawasmeh, K. H., Al-Kuwaiti, A. H., ... & Al Dahmani, K. M. (2024). Free Communications of the Seventh Annual Al Ain Research Day, Al Ain, United Arab Emirates, June 9, 2023. Ibnosina Journal of Medicine and Biomedical Sciences, 16(01), Al-A36.
- 7. Nguyen, H. T. (2024). Evaluate the efficacy of plasmapheresis therapy in patient with hypertriglyceridemia-induced pancreatitis in 108 Military Central Hospital from January 2016 to January 2023 (Master's thesis).
- 8. Saeed, Z. I., Akturk, H. K., Aleppo, G., Kruger, D., Levy, C. J., Mader, J. K., ... & Shah, V. N. (2025). Insulin Titration Recommendations When Using Glucagon-Like Peptide 1 Receptor Agonist Therapy in Adults With Type 1 Diabetes. *Clinical Diabetes*, 43(1).
- Giovanella, L., Tuncel, M., Campennì, A., Ruggeri, R. M., Huellner, M., & Petranović Ovčariček, P. (2025). Endocrine Adverse Events Induced by Cancer Treatments: The Role of 18F-Fluorodeoxyglucose Positron Emission Tomography. *Cancers*, 17(16), 2651.
- Carsote, M., Nistor, C., Gheorghe, A. M., Sima, O. C., Trandafir, A. I., Nistor, T. V. I., ... & Ciobica, M. L. (2024). Turning Points in Cross-Disciplinary Perspective of Primary Hyperparathyroidism and Pancreas Involvements: Hypercalcemia-Induced Pancreatitis, MEN1 Gene-Related Tumors, and Insulin Resistance. *International Journal of Molecular Sciences*, 25(12), 6349.
- 11. Veseli, E., Mehrabanian, M., & Ammar, N. (2025). The potential of artificial intelligence in

- the early detection of systemic diseases during routine dental care: The potential of artificial intelligence in the early detection of systemic diseases during routine dental care. *British Dental Journal*, 239(3), 168-174.
- 12. Hamdani, T. M. (2025). Narratives of Identity: Indonesian Cinema and the Journey to Global Recognition. In *Global Development of Asian Cinema in the Film Industry* (pp. 55-82). IGI Global Scientific Publishing.
- Blank, S. P., Blank, R. M., Laupland, K. B., Tabah, A., Gill, D., Kumar, A., ... & Ramanan, M. (2025). Queensland Critical Care Research Network (QCCRN). Sodium bicarbonate administration for metabolic acidosis in the intensive care unit: a target trial emulation. *Intensive Care Med*, 51(6), 1-9.
- 14. Alnajadah, A. Too close or not enough? The refinement of the Citizen Satisfaction Index (CSI) in place brands: a comparison of the significance of personal factors between Kuwait City and London (Doctoral dissertation, 88wwz).
- Aleksandrovich, Y. S., Prometnoy, D. V., Petryaykina, E. E., Kiyaev, A. V., Peterkova, V. A., Kopylov, V. V., ... & Alyokhina, A. A. Diagnosis and Intensive Care in Children's Diabetic Acidosis: an Interdisciplinary Viewpoint. GENERAL REANIMATOLOGY, 40.
- 16. Berman, R., Heyworth, B., & Ahamed, A. (Eds.). (2025). The UK Association of Supportive Care in Cancer Handbook of Supportive Oncology. CRC Press.
- 17. Tallarico, R. T., Jing, B., Lu, K., Chawla, S. A., Luo, Y., Badathala, A., ... & Legrand, M. (2025). Postoperative Outcomes Among Sodium-Glucose Cotransporter 2 Inhibitor Users. *JAMA surgery*, *160*(6), 681-689.
- Praschan, N., Beach, S. R., Fricchione, G. L., Huffman, J. C., & Stern, T. A. (2024). 38 Catatonia, Neuroleptic Malignant Syndrome, and Serotonin Syndrome. Massachusetts General Hospital Comprehensive Clinical Psychiatry-E-BOOK, 424.