ISSN: 2349-7750

CODEN [USA]: IAJPBB

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

https://doi.org/10.5281/zenodo.17333940

Available online at: http://www.iajps.com **A Mini Review Article**

BAYESIAN THEORY APPLICATION IN POPULATION **PHARMACOKINETICS**

Maria Anam*, Sushma Desai

Department of Pharmacy Practice, Chilkur Balaji College of Pharmacy, R.V.S Nagar, Aziz Nagar (Post), Moinabad Road, Near: T.S.Police Academy, Hyderabad- 500075.

Abstract:

Bayesian theory is a very powerful tool in population pharmacokinetics and personalized medication therapy as it provides an instrument for statistical analysis for integrating the new data with the priority obtained information. Healthcare professionals can design treatment plan with this method, which is very helpful in-case of sparse or noisy data, less sampling and unpredictability. Bayesian theory is a useful application for making decisions because of uncertainty, even in-case of problems with prior assumption or biasness. This article addresses the concept of Bayesian theory, mathematical equations, its application in various field, advantages and challenges along with its use in future research areas.

Keywords: Bayesian theory, pharmacokinetic parameters, population pharmacokinetics.

Corresponding author:

Maria Anam*,

Department of Pharmacy Practice,

Chilkur Balaji College of Pharmacy, R.V.S Nagar,

Aziz Nagar (Post), Moinabad Road, Near: T.S.Police Academy,

Hyderabad- 500075.

Email.ID: anammasood481@gmail.com

Phone number: 9347253648.

Please cite this article in press Maria Anam et al., Bayesian Theory Application In Population Pharmacokinetics, Indo Am. J. P. Sci, 2025; 12(10).

INTRODUCTION TO BAYESIAN THEORY:

The study of individual differences in plasma drug concentrations following standard dose regimens is known as population pharmacokinetics. Measuring this variability within the population and accounting for it in terms of patient factors like age, sex, weight, or disease state are both of importance. (1)

The theory of Bayesian inference describes how to integrate ambiguous data from several sources to

arrive to optional conclusions in the face of uncertainty. These sources comprise research results along with other beliefs, or priors, which can originate from theory, subjective assessments or earlier experiments. Probabilistic inferences, or entire probability distributions over our views about unknown variables of interest, such as generative parameters of models thought to explain the data or unknown factors caused by the observed data, are made by Bayesian theory (2).

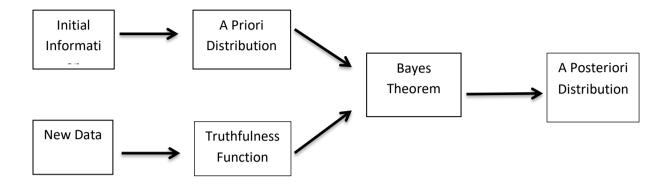


Fig no.1- Schematic diagram of Bayesian technique for determining the new probability of a disease.

Mathematical Equation of Bayesian Theory

The Bayes theorem is derived by the expression of two elements' mathematical relationships. These two components are the data from the evidence and the preexisting belief about a phenomenon.

(3)

The foundation of Bayes' theorem is the joint probability law, which asserts that the likelihood of two events happening simultaneously can be expressed as follows:

$$P(A \text{ and } B) = P(B) \times P(A|B) = P(A) \times P(B|A)$$

The calculation becomes simpler if the two events are independent, meaning that the presence of one has no effect on the other. Bayes' formula is obtained by modifying this rule:

$$[P(A) \quad x \quad P(B|A)] \quad / \quad [P(B)] \quad = \quad P(A|B)$$

After obtaining the test results, we can use Bayesian theory to estimate the likelihood of patient having a disease. The following are possible outcomes of the test: -

- ➤ (T+|D+) which indicates that the test is positive and disease is present. This is called as true positive.
- ➤ (T-|D-) which indicates that the test is negative and disease is absent. This is called as true negative.

- > (T+|D-) which indicates that the test is positive and disease is absent. This is called as false positive.
- ➤ (T-|D+) which indicates that the test is negative and disease is present. This is called as false negative.
 - Specificity can be indicated as P(T-|D-) which is the likelihood of a negative test if the disease is absent.
 - Sensitivity can be indicated as P(T+|D+) which is the likelihood of a positive test if the disease is present.

The Bayesian theorem analyses the posterior probability of having a disease by combining the test accuracy (i.e. specificity and sensitivity) with prior knowledge (18).

BAYESIAN THEORY PRINCIPLE

Understanding the parameters of the model under test is the first element. This first element, which is represented by the prior distribution, such as a normal distribution, refers to all of the information that existed previous to viewing the data. Our degree of uncertainty regarding the population value of the parameter of interest is reflected in the variance of this prior distribution, the greater the variance, the more doubtful we are. Precision, which is just the variance's inverse, is used to

represent the prior variance. The precision and confidence that the prior mean represents the population mean increases as the prior variance decreases

The data itself contains the information that makes up the second component. Given the parameters, it is the observable evidence represented in terms of the data's probability function. In other words, the likelihood function measures how probable the observed data are, given specific parameter values such as the mean and variance.

The combination of the first two components forms the basis of the third component, which is known as posterior inference. Bayesian theorem integrates both elements, and the so-called posterior distribution—a compromise of the known information and the observable evidence summarizes them. One's current knowledge is reflected in the posterior distribution, which balances observed facts with past information.

These three elements make up Bayesian theorem, which explains, in simple terms, that our present knowledge of the parameters of interest scaled by the evidence is what determines our updated understanding of those parameters of interest given our current data (4).

GENERAL APPLICATIONS OF BAYESIAN THEORY

Due to its ability to integrate past knowledge with new information, allow flexible modeling and measure uncertainty, Bayesian theory can be used in various fields. The following are some of its applications: -

- Medical Decision Making: It helps doctor to evaluate the benefit and risks of different treatments. Treatments can be adjusted for each patient by updating the predictions after the test results are obtained
- ➤ Risk Management: Bayesian theory could be used in different fields like risk assessment, safety checks or construction to handle unclear data. It also includes expert opinions and shows the relations among different factors which helps to calculate and manage risks
- Mechanistic and Physiological Models: -In pharmacology, it can combine realworld patient information with body models which helps to estimate how individuals vary from each other and the effect of different factors affects the results among individuals
- Therapeutic Drug Monitoring: In many hospitals, it is used in personalized medication therapy for individual patient. It also ensures that the drug is delivered in

- the right concentrations in the body even if blood samples are not perfectly taken
- Meta-Analysis and Evidence Synthesis: -Where there is small sample and limited data, Bayesian method helps to bring information together.

Applications of Bayesian Theory in Population Pharmacokinetics

Bayesian theory can be used in the following domains of population pharmacokinetics:

Population Pharmacokinetic Hierarchical Bayesian Modelling

In population pharmacokinetics, each patient's drug behavior is treated differently but still connected to the larger group. Bayesian methods provide a strong way to study individual patients and the population at the same time (8).

> Bayesian Estimation Using Maximum A Posteriori (MAP)

However, only a few blood samples can be taken from a patient, which makes it difficult to estimate drug exposure accurately. This method has been useful for drugs such as tacrolimus in transplant patients and mycophenolate in autoimmune conditions, where it supports better dosing decisions (9,10)

Bayesian Population Pharmacokinetics for Particular Groups

Younger children are a special case because regular blood sampling is not easy. Bayesian MAP has been applied successfully in these groups, allowing safe and recommended dosing using fewer samples. For instance, it has been used to predict how the HIV drug abacavir works in toddlers. (11)

Physiologically Based Pharmacokinetics: Bayesian Approaches (PBPK)

PBPK models use detailed body and drug information, such as organ size, blood flow, and chemical properties. Bayesian methods strengthen these models by combining their physiological knowledge with real patient data. This makes it possible to handle cases where patient numbers are small but the number of factors that are influencing is large, this improves the accuracy in predictions and subgroup analysis (12).

Using Bayesian Forecasting to Improve Predictive Performance

Another application of Bayesian theory is forecasting, where early patient observations are used to update and improve predictions of drug behavior. For example, in liver transplant patients receiving tacrolimus, Bayesian forecasting produced more reliable predictions of drug levels and responses (13).

ADVANTAGES OF BAYESIAN THEORY

The following are some benefits of applying Bayesian analysis:

- Integrating previous knowledge By adding previous information, Bayesian statistics enhance and improve the accuracy of the data from a current trial. The Bayesian technique may make it possible to include reliable prior information into a trial's statistical analysis.
- By using prior information, Bayesian theory helps to enhance the accuracy of trial outcomes especially when it depends on empirical clinical data.
- By using previous data, The Continual Reassessment Method calculates the maximum tolerated dose in Phase I trials.
- Adaptive trials design allows continuation or early termination of Phase II trials, minimizing needless exposure to ineffective treatments.
- They implement adaptive trial designs by allowing alterations throughout trials while maintaining the validity.
- The predictive power of Bayesian helps in sample size adjustments, smooth Phase II/III studies, selection of appropriate treatment and reduce development time.
- It facilitates effective decision-making persistent learning, predictive probability, hierarchical modeling and direct posterior assessment.
- The effectiveness and safety of postmarketing surveillance can be improved due to posterior distributions through premarketing trials.
- They are suitable for meta-analysis as Bayesian method combine data from different research in an appropriate manner.

CHALLENGES OF BAYESIAN THEORY

- ➤ In Bayesian trials preplanning is a crucial step as data collection, models and previous knowledge must be available beforehand to ensure validity.
- ➤ It requires mathematical modeling, including the compilation of various earlier sources and probability distributions.
- ➤ Because of its complexity and increased computer work it may lead to errors and misunderstanding.
- Adaptive designs require strict monitoring to avoid the chances of biasness and privacy related issues (17).

BAYESIAN THEORY FOR PREDICTING THE DISEASE

For example, there is an excellent test (sensitivity 99%, specificity 99%) for a rare disease with a

prevalence of one in 100,000 (i.e., P(D+) =0.00001). The following formula can be applied:

Positive Prediction Value= [(prevalence \times sensitivity) \div (prevalence \times sensitivity) + (1-prevalence) \times (1 - specificity)]

$$PPV = \frac{0.00001 \times 0.99}{0.00001 \times 0.99 + 0.99999 \times 0.01} = \frac{11}{11122} = 0.0001$$
= 0.01%

Therefore, the likelihood of a positive test for the disease is merely 0.01%, meaning that 99.99% of positive tests are false positives, even if the test is excellent. This may appear contradictory, but it is just a result of the lower frequency of test errors (one in 100) compared to disease cases (one in 100,000). In a similar manner, if a test comes back negative, we can determine the likelihood of being disease-free.

Negative Prediction Value = $[(1-prevalence) \times specificity]$

 $\frac{1}{[(1-prevalence)\times specificity]+[prevalence\times (1-specificity)]}$

We obtain NPV= $\frac{0.99999 \times 0.99}{0.99999 \times 0.99 + 0.00001 \times 0.01} = 1$ from the equation. As a result, a negative test eliminates the condition.

Next, look at a subgroup with a one in a hundred chance of having the same disease (i.e., P(D+) = 0.01). With the same test and the same disease, the PPV and NPV are now 50% and >99%, respectively. The likelihood of having the disease rises from 1% (the prevalence) to 50% when a test is positive. The disease is still essentially ruled out by a negative test. Lastly, consider a highly selective subgroup in which one in ten people have the condition. At this point, the NPV is greater than 99% and the PPV is 92%. Consequently, the PPV varies significantly based on the disease's prevalence.

Tests that have a 99% sensitivity or specificity are uncommon. Examine a test with a poor sensitivity (40%) and a high specificity (99%) for an illness with a 10% prevalence. The respective PPV and NPV are 82% and 94%. On the other hand, the PPV drops to 15% and the NPV stays high (>99%) if the specificity is low (40%) but the sensitivity is high (99%). Consequently, a low specificity significantly lowers the PPV. Given that a low specificity leads to a significant number of false positives, this is not surprising. A low sensitivity has little impact on the PPV but slightly lowers the NPV.

Where • PPV → Positive Predictive Value; NPV → Negative Predictive Value; $P(D+) \rightarrow Probability$ of Disease Present (Prevalence) (18).

CURRENT RESEARCH ON BAYESIAN THEORY USUAGE

❖ The study "Bayesian Deep Learning and Bayesian Statistics to Analyze the European SARS-CoV-2 Countries Policies" carried between early 2020 and mid-2022 focused at how different policies like mask use, travel limits and lockdowns impacted the spread of Covid-19 in 30 European Countries. The researchers used modern techniques to handle the missing data, uncertainty and measurement errors and to study the effects of policies under different levels of public compliance, to give more accurate results compared to traditional method. The key merits of this approach were, that it provided a range of possible outcomes, handled underreported cases by referring to prior information and hierarchical models.

To conclude: the above study proved that Bayesian approach are beneficial for analyzing the impact of international COVID-19 rules and helping government to make effective evidence-based health decisions.

From early 2020 to mid-2022, the study "Bayesian Deep Learning and Bayesian Statistics to Analyze the European Countries' SARS-CoV-2 Policies" examines the ways in which epidemiological and policy factors impacted the spread of COVID-19 in 30 European nations. In order to adjust for uncertainty, scarce data, and measurement disturbances, it models the consequences of several policy interventions, such as lockdowns, mask limitations. mandates. and travel contemporary Bayesian techniques, such as Bayesian deep learning and traditional Bayesian statistics.

Robust estimate of the marginal and combined effects of several policies across nations within various compliance situations is made possible by the fundamental Bayesian approach. More precise than traditional statistical models, Bayesian deep learning enables the model to learn from heterogeneous temporal and spatial data, reflecting the patterns of disease spread and policy effects in the actual world. One of the approach's main uses is uncertainty quantification, where policymakers are given categories of possible outcomes rather than narrow-point predictions via posterior distributions. Additionally, the structure allows for flexible revisions in response to newly acquired data, such as vaccination rates or virus variations,

and it makes it easier to draw conclusions from underreported or insufficient event and mortality counts by incorporating previous information and using hierarchical modelling.

The results show that Bayesian techniques are quite useful for evaluating international and multi-policy initiatives, and they aid in determining which interventions have the greatest statistical effect. This improves global cooperation in addressing pandemic issues and offers practical insights for evidence-based public health decision-making. Overall, the study shows that deep learning and modern Bayesian theory provide reliable, flexible, and understandable methods for contemporary epidemiological investigation. (19)

Future Research Directions in Bayesian Federated Learning

Future research studies in Bayesian Federated Learning (BFL) aims to make the learning more flexible, adjustable and useful in real world applications. Researchers are focusing on handling data that are coming from various clients that are not the same (non-Independent and Identically Distributed) handling sparse or noisy data and solving various problems like sparsity and instability. They are working to increase adaptability and reduce communication and computation costs to make BFL more effective. Finally, the future research directions in BFL focuses on privacy, fairness, interpretability, ethics and hybrid approaches to achieve good results (20).

CONCLUSION:

Bayesian theory is a strong and practically applicable tool used for studying the population pharmacokinetics and personalized medicine. It facilitates accurate dose predictions, effective therapy monitoring by integrating previously collected data with patient dependent information. It is advantageous in case of handling sparse data, uncertainty and complex model. Bayesian theory has more potential in pharmacology, evidence-based medicine, other scientific fields and enhance prediction performance.

REFERNCES:

- (1) Aarons L. Population pharmacokinetics: theory and practice. Br J Clin Pharmacol. 1991 Dec;32(6):669-70. PMID: 1768557; PMCID: PMC1368544.
- (2) Fox, C. (2018). Bayesian inference. In *Springer textbooks in earth sciences, geography and environment* (pp. 75–92). https://doi.org/10.1007/978-3-319-72953-4 6
- (3) Introna, M., Van Den Berg, J. P., Eleveld, D. J., & Struys, M. M. R. F. (2022). Bayesian statistics in anesthesia practice: a tutorial for

- anesthesiologists. *Journal of Anesthesia*, *36*(2), 294–302. https://doi.org/10.1007/s00540-022-03044-9
- (4) Van De Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & Van Aken, M. A. (2013). A gentle introduction to Bayesian Analysis: Applications to Developmental Research. *Child Development*, 85(3), 842–860. https://doi.org/10.1111/cdev.12169
- (5) Schumacher GE, Barr JT. Bayesian approaches in pharmacokinetic decision making. Clin Pharm. 1984 Sep-Oct;3(5):525-30. PMID: 6488735.
- (6) Carol K.H. Hon, Chenjunyan Sun, Bo Xia, Nerina L. Jimmieson, Kirsten A. Way, Paul Pao-Yen Wu; Applications of Bayesian approaches in construction management research: a systematic review. Engineering, Construction and Architectural Management 31 May 2022; 29 (5): 2153–2182. https://doi.org/10.1108/ECAM-10-2020-0817
- (7) Krauss M, Tappe K, Schuppert A, Kuepfer L, Goerlitz L. Bayesian Population Physiologically-Based Pharmacokinetic (PBPK) Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations. PLoS One. 2015 Oct 2;10(10):e0139423. doi: 10.1371/journal.pone.0139423. PMID: 26431198; PMCID: PMC4592188.
- (8) Smith, A., & Wakefield, J. (1994). The hierarchical Bayesian approach to population pharmacokinetic modelling. *International Journal of Bio-Medical Computing*, 36(1–2), 35–42. https://doi.org/10.1016/0020-7101(94)90093-0
- (9) Nanga, T. M., Woillard, J., Rousseau, A., Marquet, P., & Prémaud, A. (2022). Population pharmacokinetics and Bayesian estimation of mycophenolate mofetil in patients with autoimmune hepatitis. *British Journal of Clinical Pharmacology*, 88(11), 4732–4741. https://doi.org/10.1111/bcp.15389
- (11) Zhao, W., Cella, M., Della Pasqua, O., Burger, D., & Jacqz-Aigrain, E. (2011). Population pharmacokinetics and maximum a posteriori probability Bayesian estimator of abacavir: application of individualized therapy in HIV-infected infants and toddlers. *British Journal of*

- *Clinical Pharmacology*, 73(4), 641–650. https://doi.org/10.1111/j.1365-2125.2011.04121.x
- (12) Krauss, M., Burghaus, R., Lippert, J., Niemi, M., Neuvonen, P., Schuppert, A., Willmann, S., Kuepfer, L., & Görlitz, L. (2013). Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification. *In Silico Pharmacology*, *I*(1). https://doi.org/10.1186/2193-9616-1-6
- (13) Cai, X., Li, R., Sheng, C., Tao, Y., Zhang, Q., Zhang, X., Li, J., Shen, C., Qiu, X., Wang, Z., & Jiao, Z. (2020). Systematic external evaluation of published population pharmacokinetic models for tacrolimus in adult liver transplant recipients. *European Journal of Pharmaceutical Sciences*, 145, 105237. https://doi.org/10.1016/j.eips.2020.105237
- (14) Savchuk, Vladimir, and Chris P. Tsokos. *Bayesian theory and methods with applications*. Vol. 1. Springer Science & Business Media, 2011.
- (15) Chen, A., Gupta, A., Huy, D., DO, & Nazer, L. H. (2022). Bayesian method application: Integrating mathematical modeling into clinical pharmacy through vancomycin therapeutic monitoring. *Pharmacology Research* & *Perspectives*, 10(6). https://doi.org/10.1002/prp2.1026
- (16) Lewis, M. G., & Nair, N. S. (2015). Review of applications of Bayesian meta-analysis in systematic reviews. https://nicpd.ac.in/ojs-/index.php/gjmedph/article/view/3978
- (17) Gupta, S. K. (2012). Use of Bayesian statistics in drug development: Advantages and challenges. International Journal of Applied and Basic Medical Research, 2(1), 3. https://doi.org/10.4103/2229-516x.96789
- (18) Webb, M., & Sidebotham, D. (2020). Bayes' formula: a powerful but counterintuitive tool for medical decision-making. *BJA Education*, 20(6), 208–213. https://doi.org/10.1016/j.bjae.2020.03.002
- (19) Khalili, H., Wimmer, M. A., & Lotzmann, U. (2024). Bayesian Deep Learning and Bayesian Statistics to analyze the European countries' SARS-COV-2 policies. *Mathematics*, *12*(16), 2574. https://doi.org/10.3390/math12162574
- (20) Cao, L., Chen, H., Fan, X., Gama, J., Ong, Y., & Kumar, V. (2023). Bayesian Federated Learning: a survey. *arXiv* (*Cornell University*). https://doi.org/10.48550/arxiv.2304.13267