

**INDO AMERICAN JOURNAL OF
PHARMACEUTICAL SCIENCES**

SJIF Impact Factor: 7.187

<https://doi.org/10.5281/zenodo.18140477>

Available online at: <http://www.iajps.com>

Review Article

ARTIFICIAL INTELLIGENCE IN HEALTH CARE – A REVIEW

Ponnada Himaja Kumari¹, Shaik Momina², Kalam Sai Sri³

^{1, 2, 3} Department of Pharmacy Practice, GIET School of Pharmacy, Godavari Global University, Rajahmundry, East Godavari district, Andhra Pradesh, India.

Abstract:

Artificial Intelligence (AI) has been one of the key technologies to change the face of modern healthcare by bringing forth a variety of solutions for the different parts of the medical process like diagnosing a disease, planning treatment, monitoring a patient, and even improving the efficiency of administration. Besides that, through better machine learning, deep learning, robotics, and natural language processing, AI has made it possible for medical practitioners to rely on AI for decision making and for medical imaging, predictive analytics, and personalized care to be more accurate. In this regard, AI-based applications are to a large extent responsible for the early detection of chronic diseases and even deadly conditions like cancer, heart diseases, and brain disorders. Moreover, the drug discovery assisted by AI is speedier therapeutic development which leads to a decrease in the overall cost and time. Along with its many advantages, the technology also faces challenges such as data privacy, biased algorithms, difficulties in the regulatory process, and challenges in integration. It is very important to deal with these issues so that the use of AI in healthcare will be responsible, secure, and fair.

Keywords: Artificial Intelligence, Healthcare, Machine Learning, Medical Imaging, Personalized Medicine, Robotics, Predictive Analytics, Clinical Decision Support Systems, Telemedicine, Data Privacy

Corresponding author:

Ponnada Himaja Kumari,

*Department of Pharmacy Practice,
GIET School of Pharmacy, Godavari Global University,
Rajahmundry, East Godavari district, Andhra Pradesh, India.
phimajakumari@gmail.com*

QR CODE

Please cite this article in press Ponnada Himaja Kumari et al., Artificial Intelligence In Health Care – A Review, Indo Am. J. P. Sci, 2026; 13(01).

INTRODUCTION:

In the field of medical care, the artificial intelligence (AI) technology is a pioneering force that brings about a new era and the world is slowly but surely changing. In simple words, AI is the technology that mimics human cognitive abilities like learning, reasoning, and decision making. So, AI is a combination of computer science, data analytics, and clinical expertise that is used to enhance medical practices.[1] During the last ten years, AI adoption in the healthcare sector has been accelerated by an exponential increase in computing power, the availability of large datasets in the medical field, and the development of powerful algorithms. AI ranges from helping doctors to catch diseases at an early stage to providing cost-effective health solutions and thus, a great deal is given to it to come up with new ways to improve patient outcomes. Due to the aging population and the increase in chronic diseases, the demand for healthcare will keep rising; thus, AI will be the main driver of the development of smarter and more efficient medical systems.[2] The entry of AI into healthcare has made a remarkable improvement in the precision of diagnosis and clinical decision-making. The Machine learning and deep learning systems are capable of scrutinizing vast amounts of data and consequently, spotting the disease patterns that are not even visible to humans. The AI algorithms support a wide range of fields in medicine including radiology, pathology, dermatology, and cardiology by not only reading images but also predicting the risk factors of the patients and suggesting customized treatment plans.[3] At the same time, the NLP (Natural Language Processing) technology is used to ease the documentation process by extracting meaningful insights from EHRs (electronic health records) that can be one of the factors in the support of clinical decisions that are based on evidence. Furthermore, the increasing focus on value-based healthcare has the effect of the physicians being able to use AI tools as aids to shift their attention from taking over the paperwork to attending to patients. This whole shift mirrors a vital tech evolution to the area of precision medicine and active disease management.[4]

Besides its contribution to diagnosis and treatment, AI has also become a major player in the field of preventive care and patient monitoring. Health sensors implanted in patients or just worn by them, and healthcare devices that are interconnected are always on the job collecting important health indicators and thus, allowing for the real-time monitoring of patients with chronic diseases such as diabetes or heart problems. Predictive analytics models process this data, providing alerts in advance, cutting down hospitalizations, and stopping the developments of complications that

could have been avoided. [5] AI-enabled virtual healthcare platforms improve the availability of medical services, particularly in areas with a shortage of medical professionals and in rural settings, by providing online appointments and digital wellness support. The digital transformation of the healthcare sector thereby creating an inclusive health care system that is not limited by geographical barriers or lack of healthcare workers as it is possible to have timely intervention and continuity of care everywhere.[6]

AI is also transforming the pharmaceutical and research fields by significantly cutting down the time and cost of drug discovery and clinical trials. High-level computation can evaluate millions of potential drugs, and forecast drug-target interaction, and tailor therapy creation way quicker than conventional laboratory techniques. [7] AI systems speed up the clinical data evaluation and the process of grouping patients according to their suitability is made easier, thus increasing the success rates of trials. Besides, robotic automation contributes to greater accuracy in surgery and physiotherapy which results in less invasive surgeries and faster patient recuperation. All these changes make it clear that AI is a powerful ally in medical science and is opening up new horizons that were previously restricted by human capability and regular health care services.[8]

AI's impact on the healthcare sector was very pronounced, nevertheless, its application is still facing major hurdles. The issues that have led to this situation include security of data, lack of proper interoperability, prejudiced AI models, moral dilemmas, and legal rights that are at cross purposes with each other thus collectively blocking the technology's acceptance. It will take time for healthcare workers and the general public to get to a point where they would trust AI based on that it is personalized, secure, and transparent.[9] The sharing of knowledge among clinicians, data scientists, policymakers, and regulatory authorities has to be regular and continuous so that a safe AI implementation framework can be designed and consented to. In the future, the partnership of AI and human skills will change the medical services from predictive, personalized, equitable to uncaring and one-directional.[10]

TYPES OF ARTIFICIAL INTELLIGENCE USED IN HEALTHCARE

Machine Learning (ML)

Machine Learning (ML) is one of the most utilized AI technologies in the healthcare industry and dependent on algorithms that learn from clinical data to improve their performance gradually. ML makes it possible for machines to recognize

patterns, categorize data, and forecast outcomes without necessitating immunity programming for each task individually. In the healthcare field, ML is integrated into the processes of risk assessment for diseases, diagnostic support, planning of therapies, and management of resources. It is considered to be the main factor behind the precise clinical insights generated from the analysis of medical imaging, lab results, genomics data, and patient history. By making use of the real-world data for training purposes continuously, ML models provide better decision-making accuracy and reinforce the practice of medicine through the use of evidence.[11]

a) Supervised Learning

Supervised learning is the primary type of machine learning used in the healthcare sector and is based on labeled datasets where the correct outcomes are already known, which is why it is sometimes referred to as the “most common” type. These models learn from their mistakes; they do it by comparing their predicted outputs to the actual results and thus adjust their parameters little by little until accuracy is high enough. The hospital's diagnostics and treatments branches rely heavily on supervised learning algorithms that perform disease detection, risk classification, and treatment prediction. As an illustration, these models can process XRays, CT scans, MRs, and so on and then point out the diseased areas with utmost accuracy while separating them from normal tissue. Additionally, they contribute to intuitive medical devices by counting coronary event risks, spotting retina damage from diabetes, and showing tumor stages up. By mixing various data sources like lab tests, ECGs, and patient history, the supervised learning helps practitioners to take trustful, data-oriented clinical decisions.[12,13]

b) Unsupervised Learning

Unsupervised learning accomplishes the analysis of large amounts of unlabeled medical data, revealing the hidden structures and patterns that are present in the data without human supervision. This method is especially useful in the health care field where mechanisms of disease are not fully understood or there is a great diversity among the patients. Clustering methods take patients with the same characteristics and place them in groups, thereby providing support for personalized medicine by recognizing the subtypes of diseases such as asthma, cancer, or diabetes. Treatment strategies can be individualized based on the insights gained, and unknown risk factors can be discovered. Unsupervised learning is also a technique applied to anomaly detection, which is the identification of unusual patterns in health that might signify the presence of new or rare conditions. The power of unsupervised learning to uncover new medical knowledge from difficult datasets makes it a very valuable tool for the

betterment of disease classification and the promotion of healthcare accuracy.[14,15]

c) Reinforcement Learning

The essence of reinforcement learning (RL) is the learning of the best clinical decisions through the ongoing interaction with the environment and the provision of rewards and penalties. In contrast to other learning modes, RL is continuously and dynamically customized to the varying patient conditions, thereby rendering it ideal for the individual treatment planning and the real-time decision making. RL models in critical care and oncology are assisting the doctors in optimizing drug dosing, minimizing treatment side effects and hence increasing therapeutic outcomes. In robotic surgery, RL empowers the robot to provide autonomous assistance with consistent accuracy and to gradually increase its performance. Moreover, RL aids in the optimization of hospital workflow including emergency triage and resource allocation. Reinforcement learning's ability for self-improvement and adaptive intelligence reinforces its position as a major player in the future of autonomous healthcare systems.[16,17]

Deep Learning (DL)

Deep Learning (DL) is the most advanced and complex machine learning and it operates on the principles of artificial neural networks that mimic the structure and functions of the human brain to process and analyze intricately complicated medical data. A DNN (Deep Neural Network), which is commonly used in the DL process, consists of several layers through which the data is passed and the system gradually learns the abstract features on its own (i.e. without human intervention) from the raw data. The whole process of deep learning has brought about a tremendous change in the healthcare industry particularly in the areas of radiology, pathology, ophthalmology, and dermatology, where the imaging diagnosis is of utmost importance. Convolutional Neural Networks (CNNs) are used to spot the imperfections in the X-ray images, e.g., identifying the presence of a tumor, fractures, or lung lesions, and they produce the same level of diagnostic accuracy as the best doctors. In addition to this, Recurrent Neural Networks (RNNs) are utilized in the interpretation of temporal data like ECG signals and patient history to forecast the course of disease and the response to treatment. Deep Learning (DL) models are also implemented in the recognition of spoken language by the virtual assistants, thus enhancing the communication between doctors and patients and speeding up the process of clinical documentation. The DL has a great potential in the future automation and precision healthcare system because of its quick and continuous development along with powerful handling of large data.[18,19]

Natural Language Processing (NLP)

Natural Language Processing (NLP) is a significant sector of AI that will allow computers to understand, interpret, and produce human language. In health care, a lot of patient data is present in the form of clinical notes, discharge summaries, laboratory reports, and radiology descriptions, which are all unstructured. These sources are merely textual and it is through NLP techniques that the first clinical decision and then the documentation workload are cut down with the help of the extraction of insights from these texts. In addition, NLP-embedded systems facilitate the identification of symptoms, classification of diseases, error detection in medications, and coding process automation for insurance and billing. Voice recognition technology is one of the tools that are helping physicians by changing the spoken language to EHRs, thus cutting the time consumed and reducing the administrative pressure. Moreover, patients are more engaged through AI chatbots owing to the NLP, wherein one can get basic health advice, make appointments, and avail of mental health support. Additionally, the analysis of sentiments in patient comments allows for the enhancement of healthcare service provision. As the models for language continue to develop, it is predicted that NLP will be a major contributor to the creation of digital health care settings that are smarter, more efficient, and more user-friendly.[20,21]

Expert Systems

One of the first and most commonly used applications of artificial intelligence in medical care is expert systems. These programs work by having a structured database of medical knowledge and rules already set to imitate the capabilities of the best doctors. The software that actually does the reasoning, also known as the inference engine, is the one that gets the patient information and makes possible diagnoses, recommends treatments, and helps with the clinical decisions. A famous instance is the Clinical Decision Support Systems (CDSS), which provide help to healthcare practitioners in recognizing drug interactions, choosing the most appropriate therapies, and reducing the risk of mistakes in the medical field. Particularly where there are not many specialists available, expert systems are a great help to the remote or less experienced doctors as they enable them to make right clinical decisions. Nevertheless, the accuracy of expert systems is greatly determined by the correctness and comprehensiveness of the knowledge that is fed into them. In spite of certain downsides, like the problem of updating rules and the difficulty of working with uncertain data, expert systems are still in the front line of making patient safety, evidence-based medicine, and healthcare efficiency better.[22,23]

Robotics and Automation

Robotics and automation to a large extent embody the role of AI in medical applications, changing the nature of both clinical and operational workflows. The da Vinci system and similar others are examples of robot-assisted surgeries powered by AI, which provide better precision, stability, and imaging during minimally invasive procedures leading to fewer complications, quicker recovery, and better patient outcomes. In the field of rehabilitation medicine, robotic exoskeletons are helping to restore the movements of stroke, spinal cord injury, or mobility impaired patients through the assistance of repetitive and controlled movements. Automation is also heavily present in the hospital pharmacy and laboratory departments where robotic systems with great precision handle processes like medication dispensing, specimen processing, and sterilization thus avoiding human mistake to a large extent. AI-powered autonomous robots are utilized in the healthcare sector for disinfection, patient transport, and supply delivery, which not only adds to the efficiency but also leads to the staff's workload reduction. Besides that, telepresence robots allow remote consultations thereby ensuring that the continuity of care is maintained even in the case of underserved or quarantine settings. The integration of AI into robotics technology not only assures the intelligent adaptation of the healthcare delivery but also the patient-centered approach.[24,25]

APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN HEALTHCARE

1. Disease Diagnosis and Early Detection

AI has a major positive impact on the speed and accuracy of disease diagnosis. It does the latter by performing intricate analyses of medical data, which may include images, laboratory results, and patient histories. Deep learning algorithms are skilled at spotting tiny defects or irregularities (that are sometimes missed by doctors) in X-rays, MRIs, and CT-scans. The early diagnosis paves the way for immediate treatment, especially in the cases of cancer, heart diseases, and brain disorders. This step makes the end result for patients better and at the same time lowers the incidence of death due to the provision of timely clinical interventions.[26]

2. Medical Imaging and Radiology

AI is a game-changer for the field of radiology as it takes over the automation of mundane jobs like image segmentation, pattern recognition, and anomaly detection. The interpreters who work with these systems obtain highly accurate results and the radiologist reduces his/her workload and the risk of human error. Algorithms in the area of AI that are very sophisticated can even take the quality of an image to a greater height, indicate the presence of tumors or fractures, and even help with speeding up

the generation of reports. These systems not only lead to faster diagnosis but also raise the standard of accuracy in imaging-based assessments and together with them better patient care in radiology departments becomes a reality.[27]

3. Predictive Analytics and Risk Stratification

The AI employs the machine learning technique to predict the risk of diseases and patient deterioration by analyzing ultra-large data sets from the electronic health records and wearable devices. The models spot the early warning signs, allowing the doctors to act prior to the occurrence of complications. Predictive analytics is used to divide the patients into different risk groups, making it possible to design specific treatment plans according to the need of different groups. This results in increased hospital efficiency, decreased readmission rates, and the provision of preventive care for chronic diseases like heart failure and diabetes at the right time.[28]

4. Personalized and Precision Medicine

AI has a major role in healthcare via precision medicine through the combination of genetic, environmental, and clinical data for the formation of individualized treatment plans. The processing of genomic sequences, biomarkers, and patient-dedicated qualities all together lead to prediction of therapy response and drug selection optimization. This method results in the minimization of side effects as well as improvement in the effectiveness of the treatment. By providing the right patient with the right drug according to the patient's genetic profile, precision medicine has made an amazing impact on oncology, pharmacogenomics, and chronic disease management.[29]

5. Drug Discovery and Development

The process of drug discovery is sped up by AI through the prediction of molecular behavior, the screening of compounds, and the identification of promising candidates for drugs. The chemical interactions are simulated by machine learning models; hence, they can assess toxicity and cut the need for large-scale laboratory experiments. AI also identifies new therapeutic uses for the existing drugs and hence, supports drug repurposing. This very project keeps development timelines short, reduces research costs, and also increases the chances of finding a remedy for hard-to-treat or rare diseases. [30]

6. Virtual Health Assistants

AI-empowered virtual assistants provide constant support via chatbots, mobile applications, and voice interfaces. They perform several functions such as helping patients take their medicines, keeping track of their symptoms, organizing their medical appointments, and directing them to trustworthy health information. The use of these tools not only increases the ability of patients to participate in their own treatment but also leads to a reduction in unnecessary visits to clinics and

promotes health management from a distance. Assistants, indeed, play a great role in chronic diseases and old people who need consistent reminders and guidance as they are the primary patients.[31]

7. Remote Patient Monitoring

AI has a major role in enhancing remote patient monitoring through the use of worn sensors that keep track of the crucial signs like heart rate, glucose level, sleep and oxygen saturation patterns. By analyzing the data in real-time, the doctors are notified of any sudden changes and can therefore carry out early interventions. This constant monitoring is very important in the management of such chronic diseases as diabetes, COPD, hypertension, and others. It lowers the number of hospital admissions, supports the treatment of patients at home, and leads to a better control of diseases in the long run.[32]

8. Robotic-Assisted Surgery

AI-powered surgical robots take surgery to the next level by making it more precise, flexible, and controlled. The robotic systems help minimally invasive surgery by the surgeon being able to work in the area with the use of the very small, accurate and steady movements. The use of AI to analyze the real-time surgical data, reduce tremors and combine forces with the other factors for safer outcomes is like a win-win situation. The patient incisions are smaller, the complications are less, the recovery is quicker, and the quality of surgery overall is improved.[33]

9. Clinical Decision Support Systems (CDSS)

AI-backed CDSS tools offer a helping hand to clinicians by going through the patient's data, clinical guidelines, and research evidence at the same time to produce recommendations in real-time. They aid in the diagnosis of diseases, give the treatment options and error prevention of medication. The coalescence of these systems with the electronic health records is so perfect that it enhances precision, backs practitioners with current knowledge, and alleviates the cognitive load on the doctors. CDSS is a boon to patient outcomes and a pillar to the uniformity of clinical care in different healthcare setups.[34]

10. Administrative Workflow Automation

Administrative activities are made more efficient by AI, which takes over the manual tasks of medical coding, billing, scheduling appointments, and creating documentations. The use of Natural Language Processing (NLP) makes it possible to digitize the doctors' notes, whether they are in written or oral form, in an organized manner. The result of automating these processes is that the burden of administration is lessened significantly, human errors are reduced to a large extent, and the overall efficiency of operations is improved. Consequently, healthcare workers are able to devote more time to the patients' needs and less to

the non-clinical, repetitive tasks which result in lower costs and increased productivity.[35]

11. Population Health Management

The application of AI to the analysis of vast datasets provides an effective means of monitoring health trends and predicting disease outbreaks, in addition to evaluating and assessing the various risk factors at the population level. It is of great assistance in locating the high-risk areas, determining the extent of the vaccination problem, and planning the healthcare resources in a way that is most effective. Such information not only backs up public health policies but also brings about better community intervention programs and leaves the public more prepared for the upcoming threats. The role played by AI-driven analytics in the chronic disease management and shaping of health policies at a national level cannot be overstated.[36]

12. Mental Health Assessment

AI is a reliable ally for mental health purposes as it can analyze a person's speech, behavior, facial expressions, and online communication to find the first signs of depression, anxiety or cognitive decline. In this case, the AI act as the first line of support providing counseling, emotional support, and recommending therapeutic activities. The mentioned tools not only increase but also make mental health care more accessible and less stigmatized, and they allow for timely intervention. The assessments made by AI systems are to be used in parallel with traditional methods and they can also help the therapists to keep a closer eye on their patients' progress.[37]

13. Genomic Medicine

Artificial Intelligence is handling enormous genomic datasets to recognize mutations, foresee susceptibility to diseases, and recommend personalized treatment approaches. Algorithms of machine learning are speeding up the process of genome sequencing, sorting out variants, and pointing out genetic markers related to particular ailments. This facilitates early recognition of inheritable disorders and provides treatment based on precision. AI has also been a big helping hand in the gene editing area, thereby making the genomic medicine practice more accurate, scalable, and clinically significant in the healthcare sector today.[38]

14. Hospital Resource and Workflow Optimization

The application of AI in hospitals takes away the uncertainty out of operations by accurately predicting patient admissions, availability of beds, and the flow of patients in and out of the emergency room. It contributes positively to scheduling of staff, managing the supply chain, and making the most efficient use of diagnostic equipment. The tools that make these predictions also help shorten waiting times, increase patient

satisfaction and make clinical workflows more efficient. By eliminating the causes of inefficiencies, AI not only assists hospitals in better allocating their resources but also in conserving the quality of care given to the patients during the times of high demand.[39]

15. Infectious Disease Surveillance

AI plays an important role in the surveillance of infectious diseases by carrying out data analysis from hospitals, social media, environmental sensors, and travel trends. It is able to forecast the location of potential future outbreaks, keep track of the changes in the spread of the disease and coordinate the actions taken by the health authorities accordingly. Machine learning-based models are facilitating quick government action in case of new diseases owing to better detection and resource planning. The use of AI for disease monitoring is pivotal in the handling of pandemics, curbing their spread, and fortifying the security of global health.[40]

AI IN DIFFERENT HEALTHCARE DOMAINS

1. Radiology

AI, among others, boosts the quality of radiology by automated interpreting of X-rays, CT-scans, MRI, and ultrasounds with precision that is almost perfect. It immediately finds tumors, bones that are fractured, places that bleed, and small abnormalities, the latter being very subtle. Moreover, having the radiologist's workload lessened by the automated segmentation and hastened reporting. When cancer, stroke, and infections are detected at an earlier stage, the patients' outcome is good. The AI-based tools also capable of equalizing the quality of images and during the process of imaging review, they are able to support clinical decision-making.[41]

2. Oncology

AI is the co-worker in cancer care that is the one that deals primarily with radiology, pathology, and genomics for the earliest cancer detection as well as the most accurate tumor classification. Predictive models are the ones that provide others with the rough idea of when, where, and what the problem is regarding the response to medication, healing, and choice of therapy. Heuristic planning of treatments for the AI-guided ones is more or less precision cutting for the implementation of chemotherapy and radiation. The constant supervision can also spot the invasion of the treated area by the cancer and thus, prolonging the patients' cancer management and survival rates.[42]

3. Cardiology

AI is a significant factor in the improvement of cardiac diagnosis through its ability to analyze ECGs, echocardiograms, cardiac MRIs, and data from wearable devices. It catches cases of

arrhythmia, heart failure risk, and coronary artery disease earlier than traditional methods would do. Continuous heart rhythm monitoring with AI indicates to the doctors when the patient is having dangerous changes. These devices and methods not only help in prompt interventions but also reduce the number of patients admitted to hospitals and improve the quality of individualized cardiovascular treatment.[43]

4. Neurology

AI plays a major role in the detection of neurological disorders such as stroke, Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. It processes brain scans, EEG signals, and cognitive performance patterns to detect any impairment at a very early stage. Predictive algorithms are there to keep track of disease progression as well as to support rehabilitation planning. In addition, the technology helps to increase the accuracy of diagnosis and shorten the time during the course of acute neurological emergencies like stroke.[44]

5. Ophthalmology

AI is in a position to not only evaluate but to also diagnose the aforementioned diseases by analyzing retinal images, these being the diabetic retinopathy, glaucoma, macular degeneration, and cataracts. The automated screening tools work very fast in spotting the abnormalities especially in the far away places where medical facilities are not very close by. The AI develops a prognosis and also recommends a treatment plan which is timely according to the situation. It further lowers the case of blindness that can be prevented by allowing early referral and by raising the correctness of ophthalmic evaluation.[45]

6. Dermatology

AI-powered drawing interpretation picks out the skin cancers, infections, eczema, psoriasis, and pigmentation problems. High-resolution photos and dermoscopy images are evaluated using deep learning models that classify lesions accurately. AI is there for the timely detection of melanoma which consequently results in the saving of more living people. It is also there for tele-dermatology that allows diagnosis and triaging of dermatological conditions to be done remotely.[46]

7. Pathology

AI is the technology that takes care of the digitization and the next step is the analysis of biopsy slides using the AI method which results in detecting cancer cells, classifying tissues, and grading tumors with high precision. Automated microscopy not only enhances the consistency but also eliminates the human error that's a factor in the procedure. Machine learning techniques make complex patterns in histopathology visible and so, the process of diagnosis becomes quicker and more accurate. The integration of AI into laboratory

systems results in improved workflow, quality control, and overall pathology reporting.[47]

8. Emergency Medicine

AI foretells emergency department saturation, patient classification relying on symptom gravity, and quick diagnosis of critical situations are some of the main functions of the AI in the Emergency Medicine scenario. Vital signs, previous medical conditions, and live data are the inputs for the algorithms that detect threatening situations early. The life, the AI can identify stroke, sepsis, and trauma stronger and quicker than a human who is performing the same job, thus resulting in better response time and survival rates of the patients.[48]

9. Surgery

AI is a partner of the surgeons through robotic systems that improve the accuracy, the steadiness, and the view with the help of the surgeons during the surgeries. These machines minimize the chances of making the mistakes that humans do and enable the performance of procedures with less invasiveness which means less time for the patients to recover. AI keeps an eye on the surgical data, foresees problems, and aids in taking surgical decisions. All these benefits also extend to postoperative monitoring systems that turn out to be useful in patient recovery and outcome improvement.[49]

10. Psychiatry & Mental Health

AI is a technology of choice for the analysis of voices, facial expressions, mobile phone usage, and behavioral patterns for the identification of depression, anxiety, bipolar disorder, and decline in cognitive functions. Virtual therapists do not only support patients with basic therapy, but also keep track of mood variations and offer help in emergencies. Predictive models personalize treatment strategies and do the measurement of therapy response. The use of AI in psychiatry makes mental health care accessible to more patients and provides early diagnosis assistance.[50]

BENEFITS OF AI IN HEALTHCARE

1. Improved Diagnostic Accuracy

AI's precision in diagnostics is elevated through its capacity of detecting subtle patterns that are present in medical images, laboratory results, and patient data, which the clinicians probably would ignore. The use of machine learning models has made it possible to spot the diseases at their early stages thus resulting in better treatment for cancer, heart diseases, and brain-related disorders. This also leads to lesser misdiagnoses, quicker decision-making, and more reliable clinical evaluations.

2. Early Disease Detection and Prevention

AI paves the way for predictive analytics by coming up with forecasts of disease occurrence based on the analysis of risk factors and biomarkers as well as health trends. This planned move is in

favor of preventive healthcare, as it permits the carrying out of interventions in good time to prevent the disease from getting more severe. Early diagnosis not only guarantees but also speed up the process of receiving medical care, as well as the cost reduction associated with healthcare and lessening of the overall burden on the patients through the use of predictive modeling and constant monitoring.[51]

3. Personalized and Precision Medicine

AI brings together a patient's genetic profile, lifestyle factors, and clinical data inequitably to design the most suitable treatment plan. It forecasts drug reactions, indicates best therapies, and lessens negative effects. The treatment characterized by this approach is not only effective; patients are also very satisfied with it, especially in areas like oncology, pharmacogenomics, and chronic disease management.

4. Enhanced Treatment Planning

AI gives clinicians a helping hand by endorsing efficient treatment strategies through the analysis of huge datasets. It can also do outcome prediction, therapeutic alternatives evaluation and help to select the most effective way for every patient. This not only supports clinical decision-making but also reduces trial-and-error methods, thus leading to quicker recovery with more precise therapeutic interventions.[52]

5. Increased Efficiency and Workflow Automation

Artificial Intelligence takes over repetitive tasks that are usually done by humans in the departments like medical billing, scheduling, and documentation amongst others. This attempts to share the load of healthcare workers, mars human mistakes, and assures quicker delivery. With the help of automated systems, doctors will have more time for patients, which in turn will help to enhance the industry as a whole, both in terms of quality and quantity of service.

6. Advancement in Medical Imaging and Radiology

The use of AI imaging is so powerful that it almost completely takes over and even surpasses the human interpretation of what X-rays, MRIs, and CT-scans show. It gives fast, uniform, and super-precise evaluations of the images among other benefits. Radiologist's augmented by automatic segmentation and pattern detection not only become quicker but also get to find the abnormalities sooner. Consequently, diagnostic insights are better, and there is a reduction of delays in critical care.

7. Continuous Monitoring Through Wearable Technology

Technology that is supported by AI is the one that is, for instance, capable of tracking patients' vital signs and well-being metrics continuously, offering

real-time monitoring for chronic illness sufferers. The algorithms pick the abnormalities up very early and send signals to the doctors, thus making it possible to do timely interventions. This minimizes hospital admissions, facilitates distance treatment, and increases the quality of health care to the patients through the possible uninterrupted, custom-fit health monitoring. [53]

8. Cost Reduction and Resource Optimization

AI has a significant impact on healthcare costs, mainly through the reduction of diagnostic errors, shorter hospital stays, and the elimination of unnecessary procedures. Predictive models assist in the allocation of resources in an optimal manner, the reduction of readmissions as well as the creation of efficient workflows. The automation of administrative tasks has been a great help in cutting operational costs; hence, the healthcare systems are able to provide high-quality care while the patients bear less financial burden.

CHALLENGES AND LIMITATIONS OF AI IN HEALTHCARE

1. Data Privacy and Security Concerns

The use of AI in healthcare means that a huge amount of sensitive patient data has to be made available, thus increasing the chances of data being hacked, accessed by unauthorized persons, or misused. It is difficult to make sure that the privacy regulations, such as HIPAA and GDPR, are being complied with. Poor cybersecurity measures can lead to patients losing trust in healthcare institutions which in turn can slow down the acceptance of AI technologies to a great extent.

2. Data Quality and Bias Issues

AI applications typically rely on datasets that are either incomplete, unbalanced, or biased. Datasets that are of poor quality can result in wrong predictions, misdiagnoses, and unfair treatment advice. Dataset bias due to the fact that some populations are underrepresented can be one of the reasons why there are differences in healthcare outcomes.[54]

3. Lack of Transparency and Explainability

Numerous AI models, mainly deep learning systems, are known as "black boxes" due to their intricate internal processes which are not easily understandable by the doctors. The opacity of the system causes the medical practitioners to be skeptical about the AI outputs and to think twice before justifying their actions based on the algorithmic recommendations.

4. High Implementation and Maintenance Costs

The use of AI technologies involves a large capital investment in the technical infrastructure, state-of-the-art hardware, software licenses, and hiring of highly skilled personnel. Besides, the ongoing product updates, model retraining, and providing technical assistance are all activities that, together, have a significant impact on the long-term

profitability of the tech investment, thus making it very tough for the healthcare sectors with limited resources to adopt AI technologies.[55]

5. Integration Challenges with Existing Systems
 Healthcare organizations are operating with electronic health record (EHR) systems that are either outdated or not compatible with the current ones. The process of AI tools integration with these legacy systems is not only technically challenging but also quite time-consuming. Lack of proper connectivity reduces AI impact and negatively influences the acceptance of the technology among doctors.

6. Ethical and Legal Concerns

AI also introduces great challenges related to medical liability, accountability, and informed consent. It might be hard to tell who the responsible person is if AI does an incorrect diagnosis or proposes a wrong treatment. The concerns regarding the ethical aspect of decision-making through algorithms, addiction to modern technology, and the rights of the patients have to be dealt with very carefully.

7. Limited Clinical Validation and Trust

The lack of large-scale clinical validation for many AI applications is a factor that lowers the confidence of healthcare professionals. The non-existence of extensive real-world testing implies that the AI solutions might not perform in the same reliable way across different patient groups. The refusal from clinicians, their skepticism, and the fear of displacement contribute to the acceptance being more difficult.[56]

FUTURE DIRECTIONS OF AI IN HEALTHCARE

1. Integration of AI with Genomics and Precision Medicine

The future of the healthcare sector would be a heavy reliance on the AI-driven genomics for the delivery of very personalized treatments. The use of advanced algorithms would entail analyzing whole-genome sequences, biomarkers, and molecular signatures for the purpose of predicting disease susceptibility and optimizing therapy selection. AI will not only improve risk prediction models but also accelerate the process of biomarker discovery and eventually transform precision medicine into a routine component of clinical care, as the genomic databases become larger.

2. Expansion of AI-Powered Remote and Virtual Care

The telemedicine field along with virtual clinics and remote monitoring systems, will benefit a lot from the introduction of AI. The real-time health data will be continuously provided by the wearable and IoT devices, which in turn allow the AI algorithms to detect the abnormalities and inform the doctors of the situation prior. This method will be of great assistance in managing chronic

diseases, aged people, and individuals living in rural areas where the healthcare access is challenging.[57]

3. Advancements in Autonomous Surgical Robotics

The future surgical robots would make use of AI to simplify the complicated operations, and at the same time, they will be very precise and their autonomy and the decision-support system would be real-time as well. The systems may carry out the even full or partial automated tasks like stitching, guiding, and discerning the tissues. The AI-assisted robotic surgeries will minimize the human error factor, and thus, the recovery time will be reduced and the accessibility of the minimally invasive surgery will be increased through the different medical specialties.

4. Development of Explainable and Trustworthy AI Models

AI systems of the future will mainly concern themselves with explainability, which will in turn, facilitate the trust of the clinician and the approval of the regulator. XAI will throw light on the decision-making process in such a way as to allow for transparent risk assessments and the best possible patient counseling. This will lead to the widespread use of AI in the clinic, the elimination of doubts, and the methodical application of AI in diagnosis and treatment planning that is ethically sound.[58]

5. AI-Driven Drug Discovery and Digital Clinical Trials

AI will quicken the entire pharmaceutical development process by making it possible to conduct the screening of drugs virtually, do molecular simulation, and discover biomarkers. Clinical trials, which are digital and backed by AI, will have the ability to do patient monitoring remotely, use real-world data, and apply predictive analytics, all which will contribute to a massive reduction in costs and an increase in the number of patients recruited. All this will lead to a significant reduction of the time required for the discovery of new therapies and for the repurposing of the existing drugs.

6. Enhanced Public Health Surveillance and Predictive Epidemiology

AI will be the key player in the future public health systems that will know how to predict the location of the next outbreak, recognize the disease patterns and simulate the dynamics of the transmission with utmost precision. Besides, AI will be using complex data from different sources, such as the environment, genomics, and global human movement to send out the alert for new infections as soon as they come up. This will mean better preparedness for pandemics, more efficient allocation of resources, and faster response planning.

7. AI-Augmented Clinical Decision Support Systems

AI will increasingly be embedded into electronic health records to assist clinicians with personalized treatment recommendations, risk scores, and diagnostic predictions. These decision support systems will help standardize care, reduce variability, and improve outcomes. With continuous learning, AI will evolve into a dynamic assistant that adapts to new medical knowledge and patient populations.[59,60]

CONCLUSION:

The integration of Artificial Intelligence (AI) technologies into healthcare is rapidly reshaping the industry, making it more accurate, faster, and more efficient. The combination of various AI techniques, such as machine learning, deep learning, natural language processing, and robotics, has extensively impacted patient care, diagnosis, and even drug development. AI is providing clinicians with insights based on data analysis, which in turn helps in decreasing errors and making better use of the existing resources, thereby leading to better patient outcomes and safety. However, the massive potential of AI is countered with challenges like data privacy, bias in algorithms, ethical issues, high cost of implementation, and lack of clarity that need to be dealt with in order to adopt AI safely. The future introduces the development of explainable AI, genomics, remote monitoring, autonomous robots, and predictive epidemiology, all of which will contribute further to the accuracy, accessibility, and timeliness of healthcare. Healthcare will continue to employ AI if the authorities and the ethical concerns are in the right place, thus making AI a necessary element of modern healthcare systems across the globe.

REFERENCES:

1. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. *Future Healthc J.* 2021 Jul;8(2):e188-e194.
2. Berwick DM, Nolan TW, Whittington J. The Triple Aim: Care, health, and cost. *Health Affairs* 2008;27:759–69.
3. Faiyazuddin M, Rahman SJQ, Anand G, Siddiqui RK, Mehta R, Khatib MN, Gaidhane S, Zahiruddin QS, Hussain A, Sah R. The Impact of Artificial Intelligence on Healthcare: A Comprehensive Review of Advancements in Diagnostics, Treatment, and Operational Efficiency. *Health Sci Rep.* 2025 Jan 5;8(1):e70312
4. Jerfy A, Selden O, Balkrishnan R. The Growing Impact of Natural Language Processing in Healthcare and Public Health. *Inquiry.* 2024 Jan-Dec;61:469580241290095
5. Yammouri G, Ait Lahcen A. AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests. *J Pers Med.* 2024 Nov 1;14(11):1088
6. Perez K, Wisniewski D, Ari A, Lee K, Lieneck C, Ramamonjiarivelo Z. Investigation into Application of AI and Telemedicine in Rural Communities: A Systematic Literature Review. *Healthcare (Basel).* 2025 Feb 4;13(3):324.
7. Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, Rapti C, Ruiz HK, Rawat S, Kumar D, Lalatsa A. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. *Pharmaceutics.* 2024 Oct 14;16(10):1328.
8. Fahim YA, Hasani IW, Kabba S, Ragab WM. Artificial intelligence in healthcare and medicine: clinical applications, therapeutic advances, and future perspectives. *Eur J Med Res.* 2025 Sep 23;30(1):848.
9. Rahman MA, Victoros E, Ernest J, Davis R, Shanjana Y, Islam MR. Impact of Artificial Intelligence (AI) Technology in Healthcare Sector: A Critical Evaluation of Both Sides of the Coin. *Clin Pathol.* 2024 Jan 22;17:2632010X241226887
10. Nair M, Nygren J, Nilsen P, Gama F, Neher M, Larsson I, Svedberg P. Critical activities for successful implementation and adoption of AI in healthcare: towards a process framework for healthcare organizations. *Front Digit Health.* 2025 May 16;7:1550459.
11. Abualigah L, Alomari SA, Almomani MH, Zitar RA, Saleem K, Migdady H, Snasel V, Smerat A, Ezugwu AE. Artificial intelligence-driven translational medicine: a machine learning framework for predicting disease outcomes and optimizing patient-centric care. *J Transl Med.* 2025 Mar 10;23(1):302.
12. Pienaar MA, Naidoo KD. Classification and predictive models using supervised machine learning: A conceptual review. *South Afr J Crit Care.* 2025 May 19;41(1):e2937
13. Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. *Bioengineering.* 2024; 11(4):337.
14. An Q, Rahman S, Zhou J, Kang JJ. A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges. *Sensors (Basel).* 2023 Apr 22;23(9):4178.
15. Trezza A, Visibelli A, Roncaglia B, Spiga O, Santucci A. Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. *Applied Sciences.* 2024; 14(20):9305.

16. Frommeyer TC, Gilbert MM, Fursmidt RM, Park Y, Khouzam JP, Brittain GV, Frommeyer DP, Bett ES, Bihl TJ. Reinforcement Learning and Its Clinical Applications Within Healthcare: A Systematic Review of Precision Medicine and Dynamic Treatment Regimes. *Healthcare (Basel)*. 2025 Jul 19;13(14):1752.
17. Ma R, Vanstrum EB, Lee R, Chen J, Hung AJ. Machine learning in the optimization of robotics in the operative field. *Curr Opin Urol*. 2020 Nov;30(6):808-816.
18. Sadr H, Nazari M, Khodaverdian Z, Farzan R, Yousefzadeh-Chabok S, Ashoobi MT, Hemmati H, Hendi A, Ashraf A, Pedram MM, Hasannejad-Bibalan M, Yamaghani MR. Unveiling the potential of artificial intelligence in revolutionizing disease diagnosis and prediction: a comprehensive review of machine learning and deep learning approaches. *Eur J Med Res*. 2025 May 26;30(1):418.
19. Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. *Evol Intell*. 2022;15(1):1-22.
20. Van Bulck L, Reading Turchio M, Topaz M, Song J. Exploring the full potential of the electronic health record: the application of natural language processing for clinical practice. *Eur J Cardiovasc Nurs*. 2025 Mar 3;24(2):332-337.
21. Alboksmaty A, Aldakhil R, Hayhoe BWJ, Ashrafian H, Darzi A, Neves AL. The impact of using AI-powered voice-to-text technology for clinical documentation on quality of care in primary care and outpatient settings: a systematic review. *EBioMedicine*. 2025 Aug;118:105861.
22. Pac M, Mikutskaya I, Mulawka J. Knowledge Discovery from Medical Data and Development of an Expert System in Immunology. *Entropy*. 2021; 23(6):695.
23. Shortliffe EH. Medical expert systems--knowledge tools for physicians. *West J Med*. 1986 Dec;145(6):830-9.
24. Wah JNK. The rise of robotics and AI-assisted surgery in modern healthcare. *J Robot Surg*. 2025 Jun 20;19(1):311.
25. Meknassi Salime G, Bhirich N, Cherif Chefchaouni A, El Hamdaoui O, El Baraka S, Elalaoui Y. Assessment of Automation Models in Hospital Pharmacy: Systematic Review of Technologies, Practices, and Clinical Impacts. *Hosp Pharm*. 2025 Feb 27;00185787251315622.
26. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. *J Ambient Intell Humaniz Comput*. 2023;14(7):8459-8486.
27. Bhandari A. Revolutionizing Radiology With Artificial Intelligence. *Cureus*. 2024 Oct 29;16(10):e72646.
28. Dixon D, Sattar H, Moros N, Kesireddy SR, Ahsan H, Lakkimsetti M, Fatima M, Doshi D, Sadhu K, Junaid Hassan M. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. *Cureus*. 2024 May 9;16(5):e59954.
29. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J, Snowdon JL. Precision Medicine, AI, and the Future of Personalized Health Care. *Clin Transl Sci*. 2021 Jan;14(1):86-93.
30. Blanco-González A, Cabezón A, Seco-González A, Conde-Torres D, Antelo-Riveiro P, Piñeiro Á, García-Fandino R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. *Pharmaceuticals (Basel)*. 2023 Jun 18;16(6):891.
31. Maher C, Singh B, Wylde A, Chastin S. Virtual health assistants: a grand challenge in health communications and behavior change. *Front Digit Health*. 2024 May 17;6:1418695.
32. Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. *Sensors (Basel)*. 2023 Nov 29;23(23):9498.
33. Rivero-Moreno Y, Echevarria S, Vidal-Valderrama C, Pianetti L, Cordova-Guilarte J, Navarro-Gonzalez J, Acevedo-Rodríguez J, Dorado-Avila G, Osorio-Romero L, Chavez-Campos C, Acero-Alvarracín K. Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. *Cureus*. 2023 Jul 24;15(7):e42370.
34. Elhaddad M, Hamam S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. *Cureus*. 2024 Apr 6;16(4):e57728.
35. Zhu C, Attaluri PK, Wirth PJ, Shaffrey EC, Friedrich JB, Rao VK. Current Applications of Artificial Intelligence in Billing Practices and Clinical Plastic Surgery. *Plast Reconstr Surg Glob Open*. 2024 Jul 1;12(7):e5939.
36. Yang Z, Xu Y, Wang J, Li W, Zhang X, Pan H. Application of artificial intelligence in medical risk prediction: Bibliometric analysis. *Digit Health*. 2025 Sep 18;11:20552076251380652.
37. Thakkar A, Gupta A, De Sousa A. Artificial intelligence in positive mental health: a narrative review. *Front Digit Health*. 2024 Mar 18;6:1280235.
38. Khan A, Barapatre AR, Babar N, Doshi J, Ghaly M, Patel KG, Nawaz S, Hasana U, Khatri SP, Pathange S, Pesaru AR, Puvvada

CS, Billoo M, Jamil U. Genomic medicine and personalized treatment: a narrative review. *Ann Med Surg (Lond)*. 2025 Feb 13;87(3):1406-1414.

39. Nunes AL, Lisboa T, da Rosa BN, Blatt CR. Impact of artificial intelligence on hospital admission prediction and flow optimization in health services: a systematic review. *Int J Med Inform*. 2025 Dec;204:106057

40. Idahor CO, Esomu EO, Ogbonna N, Momoh Z, Ogbeide OA, Ikhru-Omoregbe O, Adigwe A, Erhabor OM, Osaghae O, Orons N. Infectious Disease Surveillance in the Era of Big Data and AI: Opportunities and Pitfalls. *Cureus*. 2025 Oct 6;17(10):e93929

41. Obuchowicz R, Lasek J, Wodziński M, Piórkowski A, Strzelecki M, Nurzynska K. Artificial Intelligence-Empowered Radiology- Current Status and Critical Review. *Diagnostics (Basel)*. 2025 Jan 24;15(3):282.

42. Lotter W, Hassett MJ, Schultz N, Kehl KL, Van Allen EM, Cerami E. Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions. *Cancer Discov*. 2024 May 1;14(5):711-726

43. Qayyum SN, Iftikhar M, Rehan M, Aziz Khan G, Khan M, Naeem R, Ansari RS, Ullah I, Noori S. Revolutionizing electrocardiography: the role of artificial intelligence in modern cardiac diagnostics. *Ann Med Surg (Lond)*. 2025 Jan 9;87(1):161-170

44. Kalani M, Anjankar A. Revolutionizing Neurology: The Role of Artificial Intelligence in Advancing Diagnosis and Treatment. *Cureus*. 2024 Jun 5;16(6):e61706

45. Hashemian H, Peto T, Ambrósio R Jr, Lengyel I, Kafieh R, Muhammed Noori A, Khorrami-Nejad M. Application of Artificial Intelligence in Ophthalmology: An Updated Comprehensive Review. *J Ophthalmic Vis Res*. 2024 Sep 16;19(3):354-367.

46. Li Z, Koban KC, Schenck TL, Giunta RE, Li Q, Sun Y. Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. *J Clin Med*. 2022 Nov 18;11(22):6826.

47. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. *Nat Rev Clin Oncol*. 2019 Nov;16(11):703-715.

48. Masoumian Hosseini M, Masoumian Hosseini ST, Qayumi K, Ahmady S, Kohestani HR. The Aspects of Running Artificial Intelligence in Emergency Care; a Scoping Review. *Arch Acad Emerg Med*. 2023 May 11;11(1):e38

49. Dr. Omar Usmani, Dr. Hamza Rayyan, Dr. Suramya Maheshwari, Dr. Kashif Khan, Dr Farhana, Dr. Sharique Ahmad. Artificial Intelligence-Driven Innovations in Surgery: Literature Overview. *Journal of Neonatal Surgery*. 2025;14 (32s):2632-2641.

50. Ali M, Ali S, Abbas Q, Abbas Z, Lee SW. Artificial intelligence for mental health: A narrative review of applications, challenges, and future directions in digital health. *Digit Health*. 2025 Nov 17;11:20552076251395548.

51. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, Aldairem A, Alrashed M, Bin Saleh K, Badreldin HA, Al Yami MS, Al Harbi S, Albekairy AM. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. *BMC Med Educ*. 2023 Sep 22;23(1):689.

52. Parekh AE, Shaikh OA, Simran, Manan S, Hasibuzzaman MA. Artificial intelligence (AI) in personalized medicine: AI-generated personalized therapy regimens based on genetic and medical history: short communication. *Ann Med Surg (Lond)*. 2023 Sep 13;85(11):5831-5833.

53. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. *Future Healthc J*. 2019 Jun;6(2):94-98

54. Yadav N, Pandey S, Gupta A, Dudani P, Gupta S, Rangarajan K. Data Privacy in Healthcare: In the Era of Artificial Intelligence. *Indian Dermatol Online J*. 2023 Oct 27;14(6):788-792.

55. Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. *Heliyon*. 2024 Feb 15;10(4):e26297

56. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R, Aggarwal K, Ibrahim S, Patil V, Smriti K, Shetty S, Rai BP, Chlostka P, Somani BK. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? *Front Surg*. 2022 Mar 14;9:862322.

57. Deivayanai VC, Swaminaathan P, Vickram AS, Saravanan A, Bibi S, Aggarwal N, Kumar V, Alhadrami AH, Mohammedsahle ZM, Altalhi R, Nasser Bin-Jumah M, Sayed AA, Albaqami A, Chopra H, Emran TB, Abdel-Daim MM. Transforming healthcare: the impact of artificial intelligence on diagnostics, pharmaceuticals, and ethical considerations - a comprehensive review. *Int J Surg*. 2025 Jul 1;111(7):4666-4693.

58. Reddy K, Gharde P, Tayade H, Patil M, Reddy LS, Surya D. Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. *Cureus*. 2023 Dec 12;15(12):e50415

59. Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. *Life*. 2024; 14(2):233.

60. Alhejaily AG. Artificial intelligence in healthcare (Review). *Biomed Rep.* 2024 Nov 12;22(1):11.