

**INDO AMERICAN JOURNAL OF
PHARMACEUTICAL SCIENCES**

SJIF Impact Factor: 7.187

<https://doi.org/10.5281/zenodo.18272024>

Available online at: <http://www.iajps.com>

Review Article

**CITRUS MAXIMA: A REVIEW OF ITS PHYTOCHEMISTRY
AND BIOLOGICAL ACTIVITIES**

Sivathmika S¹, Sayujya S S¹, Sayanth P V¹, Dr Kiran K J², Mrs. Anusree S³,
Dr Prasobh G R⁴

¹B pharm students, Sree Krishna College of Pharmacy and Research Centre, Parassala,
Thiruvananthapuram, Kerala, India

²Vice Principal and HOD, Department of Pharmacology, Sree Krishna College of Pharmacy
and Research Centre, Parassala, Thiruvananthapuram, Kerala, India

³Associate Professor, Department of Pharmacology, Sree Krishna College of Pharmacy and
Research Centre, Parassala, Thiruvananthapuram, Kerala, India

⁴Principal, Sree Krishna College of Pharmacy and Research Centre, Parassala,
Thiruvananthapuram, Kerala, India

Abstract:

Citrus maxima (Linn.), also called shaddock or pomelo, is the largest citrus fruit in the Rutaceae family. It has long been utilised in traditional medicine to treat a variety of illnesses and is readily available in India and Southeast Asian nations. The plant's varied pharmacological properties and rich phytochemical profile have drawn a lot of scientific interest. Bioactive substances like alkaloids, flavonoids, coumarins, carotenoids, monoterpenes, sesquiterpenes, steroids, amino acids, and carbohydrates have been found in *Citrus maxima*'s fruit, peel, leaves, seeds, and flowers. Numerous biological activities, such as antioxidant, antidiabetic, anti-inflammatory, analgesic, antibacterial, hepatoprotective, hypocholesterolemic, angiotensin-converting enzyme inhibitory, central nervous system depressant, and anticancer effects, are caused by these ingredients.

Keywords : *Citrus maxima*, phytochemical constituents, taxonomy, pharmacological actions

Corresponding author:

Sivathmika S, Sayujya S S, Sayanth P V

B Pharm Students,

*Sree Krishna College of Pharmacy and Research Centre,
Parassala, Thiruvananthapuram, Kerala, India.*

*Email: sivathmikas03@gmail.com , ssethu461@gmail.com ,
sayanthpv02@gmail.com*

QR CODE

*Please cite this article in press Sivathmika S et al., Citrus Maxima: A Review Of Its Phytochemistry And
Biological Activities, Indo Am. J. P. Sci, 2026; 13(01).*

INTRODUCTION:

Citrus maxima, the Pomelo also known as Pummelo or Shaddock in the Rutaceae Family is scientifically called *Citrus maxima* because it is the largest Citrus fruit.^[1] The fruit is large and round. It is simple to remove the pulp from the skin. The pulp is often coarse, pink or white in colour and has big, spindle-shaped juice sacks. Because of its big size and vibrant skin when completely mature, it is often grown as a decorative fruit.^[2] *Citrus* is *Citrus maximum*, which is widely studied for its phytochemical, pharmacological, ethnobotanical, and pharmacognostic properties.^[3] Antioxidative qualities such vitamin C, phenolics, carotenoids, and flavonoids, citrus fruits like pomelo are enhanced.^[4] Pomelo fruits are also widely employed as flavouring or fragrance-enhancing ingredients in the food, cosmetics, pharmaceutical, and perfume sectors. The fruits and leaves are used as an ingredient in a variety of toiletry products since they are a rich source of essential oils. Additionally, the flowers are highly fragrant and frequently used by perfume manufacturers.^{[5][6]} The leaves exhibit a variety of pharmaceutical effects such as antioxidant, hepatoprotection, anticancer, antimicrobial, antihyperglycemic, antidepressant, anti-inflammation and analgesic activity.^[7] Leaves are used in the treatment of convulsive cough, cholera, epilepsy and hemorrhagic diseases.^[8]

Fig 1 : *Citrus maxima*

TAXONOMY OF PLANT**Botanical name**

Citrus maxima (Linn)

Common Names

Pamelo

Pomelo

Pommelo

Jabong

Shaddock

Chinese fruit

Taxonomical Classification

Kingdom	:	Plantae
Phylum	:	Tracheophyta
Division	:	Magnoliophyta
Class	:	Magnoliopsida
Subclass	:	Rosidae
Order	:	Sapindales
Family	:	Rutaceae
Subfamily	:	Aurantioideae
Genus	:	Citrus
Species	:	maxima

Vernacular Name

Malayalam	:	Pamparamasan, Kambili narnga
Tamil	:	Pambalimasu
Telugu	:	Pampara
Hindi	:	Cakotaraa
Manipuri	:	Nobab
Bengali	:	Chakotra
Konkani	:	Toranji
Sanskrit	:	Madhukarkati
French	:	Pamblemousse
German	:	Pomelo
Japanese	:	Zabon

ORIGIN AND DISTRIBUTION

The tree is 16–50 feet (5–15 meters) tall and has a 4–12-inch twisted trunk. Assam and Tirupura's northeastern area up to 1,500 meters. It is native to the eastern region of India.^[9] South-east Asian nations like China, Japan, Indonesia, the Philippines, Thailand, and Malaysia are native to the pomelo. It is currently grown in southern China and may have been introduced to the country around 100 B.C. It is known to grow wildly on the banks of rivers in Fiji and the Friendly Islands. It is native to the east of India, it is grown commercially there. Pomelos are considered to be like unexpected guests who appear as a surprise and quickly disappear in Taiwan, southernmost Japan, southern India, New Guinea, and Tahiti.^[10]

BOTANICAL DESCRIPTION

The Pomelo is the biggest fruit among the Citrus family. The fruit ranges from nearly round to oblate or pear shaped; 10-30 cm wide; the peel, clinging, easily removed, greenish yellow or pale yellow, minutely hairy, dotted with tiny green glands. Pomelo peel is the largest and the thickest of all Citrus fruits weighing up to 30% of the fresh fruit's weight. Pulp It is divided into 11 to 18 segments, varies in colour from greenish yellow or pale yellow to pink or red and can be extremely juicy or slightly dry. The sacs can stick to one another or be loosely attached, and the segments are easily peeled. The pulp's flavour ranges from bland and little sweet to mildly or strongly acidic, sometimes with a hint of bitterness. The albedo is white and has a spongy texture, while the flavado in the fruit's rind is green with oil glands visible as spots throughout the fruit peel. The segments of the fruit are covered with a tough skin called the lamella. Seeds are few, large,

yellowish white seeds, white inside, seldom some fruits may be quite seedy.^[11]

PHYTOCHEMICAL CONSTITUENTS

Chemical constituents of *Citrus maxima* including alkaloids, amino acids, benzenoids, carbohydrates, carotenoids, coumarins, flavonoids, monoterpenes, sesquiterpenes and steroids.

• Alkaloids

5-hydroxyacronycine, acrigline A, Atalafloline, Baiyamine A&B, Buntanine, Buntanmine, Grandisine I & II, Pumiline, honyumine, natsucrin, Prenyl citpessine, Citropone A & B, Glycocitrine I are present in the roots and the bark of the plant. Caffeine are present in the flowers of the *Citrus maxima*.^[12]

• Amino acid

Alanine, Asparagine, Aspartic acid, Coline, Glutamic acid, Glycine and proline are present in the leaves.^[13]

• Carbohydrates

Fructose, Glucose and Pectin are present in the Leaf, peel and flowers.^[14]

• Carotenoids

Carotene and Roseoside present in the peels.^[15]

• Coumarins

Aurapte, Auraptene, Bergamottin are present in the peels.^[16]

• Flavonoids

Apigenin, Hesperidin, Naringin, Rutin, Sinensetin, Cosmosin, Acacetin.^[17]

• Monoterpenes

α- pinene, β- pinene, camphene, citral, limonene, camphor.^[18]

• Sesquiterpenes

α- bisabolol, α- cadinene, α- copaene, elemol.^[19]

• Steroids

β- sitosterol, Campesterol, Stigmasterol, Dauosterol.^[20]

MEDICINAL USES

- ❖ *Citrus maxima* fruit juice and peel are very nutritive and have good medicinal properties.^[21]
- ❖ Pomelo peels and pulp are used as a cough treatment, stomach tonic, cardiac stimulant, and appetizer.
- ❖ The fruit juice has the potential to improve weight loss and lower cholesterol.^[22]
- ❖ The pomelo peel extracts were evaluated for their hypolipidemic, hypoglycemic, antioxidative, antimicrobial, anti-inflammatory, and anticancerous properties.
- ❖ Rinds has effective as a brain tonic, sedative, anti-asthmatic, and to relieve headaches and eye problems.^[23]
- ❖ Rinds are considered to be the most popular part in traditional medicine for treating diarrhoea and vomiting.^[24]

- ❖ The fruit is used to cure gastrointestinal issues and cancer, and the seeds are used to treat lumbago, coughs, and dyspepsia.^[25]
- ❖ Oil from fresh leaves possess anti dermatophytic activity, Fungicidal activity.
- ❖ Pulp has been used traditionally for cosmetic purpose.^[26]

PHARMACOLOGICAL ACTION OF CITRUS MAXIMA

➤ ANTIOXIDANT ACTIVITY

Citrus maxima fruit juice's antioxidant properties were studied in rats, and results showed its protective function against DNA damage caused by hydrogen peroxide, streptozotocin, and nitric oxide producing systems. This protective activity may result from the action of various active principles, each with a single or a variety of biological activities against oxidative stress, working either independently or in combination. Thus, *Citrus maxima* fruit may have antioxidant and free radical eliminating qualities.^[27]

➤ ANTIDIABETIC ACTIVITY

Alloxan-induced diabetic rats were used to test *Citrus maxima*'s antidiabetic properties. The fruit's ethyl acetate, alcoholic, and dried juice extracts all shown strong antidiabetic effects. The results were compared with the reference standard Glibenclamide.^[28]

➤ ANALGESIC ACTIVITY

The analgesic effects of *Citrus maxima* fruit peel methanolic extracts at varying doses were evaluated in mouse models that included formalin-induced licking and biting responses and acetic acid-induced writhing responses. When compared to the reference standard Diclofenac sodium at a dose of 10 mg/kg, the extract demonstrated superior action at both tested levels.

➤ ANTI- INFLAMMATORY ACTIVITY

The carrageenan-induced paw oedema model was used to assess the anti-inflammatory effect of the methanolic extracts of *Citrus maxima* fruit peel. The extract demonstrated activity comparable to that of the ibuprofen positive control group at both tested dosages.

➤ CNS DEPRESSANT ACTIVITY

Swiss albino mice were used in open-field and hole-cross experimental settings to investigate the methanolic extract of *Citrus maxima* fruit peel. The extract exhibited strong CNS depressing effect in a dose-dependent manner, according to the results.^[29]

➤ ANTI- TUMOUR ACTIVITY

Ehrlich's Ascites carcinoma cell (EAC)-treated mice are used to examine the anti-tumor effect of *Citrus maxima* leaves. Swiss Albino mice were given EAC cells, obtained from the Chittaranjan National Cancer Institute (CNCI) in Kolkata, India, and the cells were kept alive in vivo. Administration intraperitoneally *Citrus maxima* methanolic extract has been shown to extend life, reduce tumour

volume, and increase the number of nonviable cancer cells. The haematological values were in the normal range.^[30]

➤ ANTIMICROBIAL ACTIVITY

Citrus maxima pulp and fruit peel aqueous and methanolic extracts were examined for their antibacterial efficacy against *Escherichia coli*, *Staphylococcus aureus*, and *Klebsiella pneumoniae*. According to reports, the fruit peel's methanolic extract showed antibacterial efficacy against *Klebsiella pneumoniae* and *Escherichia coli* but not against *Staphylococcus aureus*. However, the fruit pulp's methanolic and aqueous extracts demonstrated strong antibacterial activity against each of the three microorganisms. *Citrus maxima* pulp and fruit peel aqueous and methanolic extracts were examined for their antibacterial efficacy against *Escherichia coli*, *Staphylococcus aureus*, and *Klebsiella pneumoniae*. According to reports, the fruit peel's methanolic extract showed antibacterial efficacy against *Klebsiella pneumoniae* and *Escherichia coli* but not against *Staphylococcus aureus*. However, the fruit pulp's methanolic and aqueous extracts demonstrated strong antibacterial activity against each of the three microorganisms.^[31]

➤ HYPOCHOLESTEROLEMIC & ACE INHIBITORY ACTIVITY

Citrus maxima and *Citrus paradisi* juices were tested for inhibition of Angiotensin converting enzyme and hypocholesterolemic properties. Citrus juices decreased ACE activity in a dose-dependent manner. Shaddock juice significantly inhibited ACE activity compared to grapefruit juice ($p < 0.05$). The juices demonstrated reduced inhibition of enzyme activity compared to captopril. When compared to the control, there was a decrease in total cholesterol with higher amounts of citrus fruit juice. Significant increase in HDL, significant decrease in LDL. As a result, it inhibits both hypocholesterolemia and a vital enzyme associated with hypertension.^[32]

➤ HEPATOPROTECTIVE ACTIVITY

In Wistar rats treated for carbon tetrachloride-induced hepatotoxicity, *C. maxima* leaf and peel extracts had a protective effect on the liver. Its hepatoprotective action was demonstrated in experimental rats by a significant reduction in the levels of aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP).^[33] Another study found that *C. maxima* methanolic leaf extract (200mg/kg, b.w.) can protect the liver against paracetamol-induced toxicity in rats. This study employed leaf extracts for 7 days, paracetamol (2g/kg) on day 5, and silymarin (100 mg/kg, b.w.) as the standard drugs.^[34] The liver function markers, total bilirubin, total protein in blood serums, and hepatic antioxidants in liver homogenate were all found to be normal when compared to the control group. Leaf extracts with

antioxidant properties may reduce hepatocyte formation by increasing levels of hepatic antioxidant enzymes.^[35]

REFERENCES:

1. Sawant T, Panhekar D. A brief review on recent advances of *Citrus maxima* (Chakota). *Int J Recent Sci Res.* 2017;8(8):19400–19416.
2. Ani PN, Abel HC. Nutrient, phytochemical, and antinutrient composition of *Citrus maxima* fruit juice and peel extract. *Food Sci Nutr.* 2018;6(3):1–6.
3. Vijayalakshmi P, Radha R. An overview: *Citrus maxima*. *J Phytopharmacol.* 2015;4(5):263–267.
4. Uzun A, Yesiloglu T. Genetic diversity in citrus. In: Genetic diversity in plants. London: IntechOpen; 2012. p. 213–231.
5. Guo CJ, Yang JJ, Wei JY, Li YF, Xu J, Jiang YG. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. *Nutr Res.* 2003;23(12):1719–1726.
6. Abeysinghe DC, Li X, Sun CD, Zhang WS, Zhou CH, Chen KS. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. *Food Chem.* 2007;104(4):1338–1344.
7. Potdar VH, Kibile SJ. Evaluation of antidepressant-like effect of *Citrus maxima* leaves in animal models of depression. *Iran J Basic Med Sci.* 2011;14(5):478–483.
8. Mehta S, Vaghela R, Vasava B, Desai T, Patel V, Pandya D, et al. Pharmacognostic and phytochemical characterization of leaves of *Citrus maxima*. *Int J Pharm Sci Res.* 2011;2(4):175–178.
9. Kirtikar KR, Basu BD. Indian medicinal plants. Vol. 1. New Delhi: International Book Distributors; 2008. p. 495–496.
10. Morton JF. Fruits of warm climates: Pummelo. 1st ed. Miami (FL): Web Publications; 1987. p. 147–151.
11. Sawant T, Panhekar D. A brief review on recent advances of *Citrus maxima* (Chakota). *Int J Recent Sci Res.* 2017;8(8):19400–19416.
12. Huang SC, Chen MT, Wu TS. Alkaloids and coumarins of *Citrus grandis*. *Phytochemistry.* 1989;28(12):3574–3576.
13. Radhakrishnan AN, Vaidyanathan CS, Giri KVG. Nitrogenous constituents in plants: free amino acids in leaves and leguminous seeds. *J Indian Inst Sci.* 1955; 37:178–194.
14. Jantan I, et al. Chemical composition of some citrus oils from Malaysia. *J Essent Oil Res.* 1996;8(6):627–632.
15. Sawamura M, et al. Seasonal changes of isoprenoid-related substances in citrus peels. *Nippon Shokuhin Kogyo Gakkaishi.* 1986;33(8):566–571.

16. Wu TS, et al. Coumarin, acridone alkaloids and flavones from *Citrus grandis*. *Phytochemistry*. 1998;21(6):585–587.
17. Anis M. Flavonoid pattern of leaves of some citrus species and their hybrids. *Plant Biochem J*. 1981; 8:56–60.
18. Yang XH, Zhang GX, Cui P. GC/MS analysis of the chemical constituents of pomelo peel volatile oil. *Wuhan Huagong Xueyuan Xuebao*. 2001;23(2):13–15.
19. Vlisidis AG, Israilidis KI. Analysis of essential oil fraction from Greek citrus species. *Chem Chron (Gen Ekdose)*. 1998;60(3):75–78.
20. Baomin F, Yuehu P. Chemical constituents of peels of *Citrus grandis*. *Shenyang Yaoke Daxue Xuebao*. 2000;17(5):332–333.
21. Nwanneka PA, Chiamaka HA. Nutrient, phytochemical, and antinutrient composition of *Citrus maxima* fruit juice and peel extract. *Food Sci Nutr*. 2018;6(3):653–658.
22. Sidana J, Saini V, Dahiya S, Nain P, Bala S. A review on citrus—The boon of nature. *Int J Pharm Sci Rev Res*. 2013;18(2):20–27.
23. Vijayalakshmi P, Radha R. An overview: *Citrus maxima*. *J Phytopharmacol*. 2015;4(5):263–267.
24. Ahmad AA, Khalifa IIA, Abudayeh ZH. The role of pomelo peel extract for experimentally induced wound in diabetic rats. *Pharmacogn J*. 2018;10(5):885–891.
25. Nadkarni AK. *Indian materia medica*. 3rd ed. Bombay: Popular Book Depot; 1954. p. 45–49.
26. Dubey NK, Kumar R, Tripathi P. Global promotion of herbal medicines: India's opportunity. *Curr Sci*. 2004;86(1):37–41.
27. Oyedepo TA. Antioxidant potential of *Citrus maxima* fruit juice in rats. *Glob Adv Res J Med Sci*. 2012;1(5):122–126.
28. Bhandurge P, Rajarajeshwari N, Alagawadi K, Agrawal S. Antidiabetic and hyperlipidaemic effects of *Citrus maxima* Linn fruits on alloxan-induced diabetic rats. *Int J Drug Dev Res*. 2010;2(2):273–278.
29. Ibrahim M, Amin MN, Millat S, Raju JA, Hussain S, Sultana F, Islam MM, Hasan MM. Methanolic extract of peel of *Citrus maxima* fruits exhibits analgesic, CNS depressant and anti-inflammatory activities in Swiss albino mice. *BEMS Rep*. 2018;2(2):64–70.
30. Kundusen S. Antitumor activity of *Citrus maxima* (Burm.) Merr. leaves in Ehrlich's ascites carcinoma cell-treated mice. *ISRN Pharmacol*. 2011; 2011 Article ID 138737.
31. Yathiender S. A comparative study of antimicrobial activity of *Citrus maxima* and *Citrus aurantium* plant extracts. *Int J Recent Sci Res*. 2017;8(7):18507–18509.
32. Oboh G, Bello FO, Ademosun AO. Hypocholesterolemic properties of grapefruit (*Citrus paradisi*) and shaddock (*Citrus maxima*) juices and inhibition of angiotensin-I converting enzyme activity. *J Food Drug Anal*. 2014; 22:477–484.
33. Chowdhury MRH, Sagor MAT, Tabassum N, Potol MA, Hossain H, Alam MA. Supplementation of *Citrus maxima* peel powder prevented oxidative stress, fibrosis, and hepatic damage in carbon tetrachloride-treated rats. *Evid Based Complement Alternat Med*. 2015; 2015: Article ID 598179.
34. Tabeshpour J, Hosseinzadeh H, Hashemzai M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanone glycoside in citrus fruits, against natural and chemical toxicities. *DARU J Pharm Sci*. 2020;28(1):305–317.
35. Abirami A, Nagarani G, Siddhuraju P. Hepatoprotective effect of leaf extracts from *Citrus hystrix* and *Citrus maxima* against paracetamol-induced liver injury in rats. *Food Sci Hum Wellness*. 2015;4(1):35–41.