

CODEN [USA]: IAJPBB

ISSN : 2349-7750

**INDO AMERICAN JOURNAL OF
PHARMACEUTICAL SCIENCES**

SJIF Impact Factor: 7.187

<https://doi.org/10.5281/zenodo.18272263>

Available online at: <http://www.iajps.com>*Review Article*

**MICROSPHERE-BASED DELIVERY OF DABIGATRAN:
ADVANCES IN CONTROLLED RELEASE
ANTICOAGULANT THERAPY**

Hemendra Nandkishor Khatri^{*1}, Ashish Wagh², Dr. Vaishali Rathi³

¹Student, NRI Institute of Pharmacy, Bhopal

²Assistant professor, NRI Institute of Pharmacy, Bhopal

³Principal, NRI Institute of Pharmacy, Bhopal

Abstract:

Dabigatran etexilate, a direct thrombin inhibitor, has emerged as a valuable oral anticoagulant for the prevention and treatment of thromboembolic disorders. Despite its clinical utility, conventional formulations of dabigatran are limited by low oral bioavailability, dependence on intestinal transporters, and variability in patient response. These challenges have stimulated interest in advanced drug delivery systems, particularly microsphere-based formulations, to optimize therapeutic outcomes.

Microspheres, prepared using techniques such as ionic gelation, emulsion coacervation, solvent evaporation, and spray drying, encapsulate dabigatran within biodegradable polymers including chitosan, Eudragit RL100, and PLGA. Such systems offer controlled and sustained drug release, enhanced gastrointestinal stability, and improved absorption, thereby addressing the pharmacokinetic shortcomings of conventional tablets. By maintaining steady plasma concentrations and reducing peak-trough fluctuations, microsphere formulations improve pharmacodynamic predictability, minimize bleeding risks, and enhance patient compliance through reduced dosing frequency.

This review highlights the formulation strategies, polymeric approaches, and pharmacokinetic improvements achieved with dabigatran microspheres, while also discussing their translational potential and future directions. Microsphere-based delivery represents a promising advancement in controlled release anticoagulant therapy, with the potential to transform clinical practice by offering safer, more effective, and patient-friendly treatment options.

KEYWORDS: *Dabigatran etexilate, Microspheres, Controlled release drug delivery, anticoagulants, Bioavailability, Thrombin*

Corresponding author:

Hemendra Nandkishor Khatri,

Student, NRI Institute of Pharmacy, Bhopal

QR CODE

Please cite this article in press Hemendra Nandkishor Khatri et al., Microsphere-Based Delivery Of Dabigatran: Advances In Controlled Release Anticoagulant Therapy , Indo Am. J. P. Sci, 2026; 13(01).

INTRODUCTION:

Oral anticoagulants have revolutionized the management of thromboembolic disorders, offering effective alternatives to traditional agents such as warfarin¹. Among these, dabigatran etexilate, a direct thrombin inhibitor, has gained prominence due to its predictable pharmacokinetics and reduced need for routine monitoring. However, its clinical utility is limited by low oral bioavailability, variable absorption, and dependence on efflux transporters such as P-glycoprotein. These challenges have prompted the exploration of advanced drug delivery systems to optimize therapeutic outcomes².

Microsphere-based delivery systems represent a promising strategy to overcome these limitations³. By encapsulating dabigatran within biodegradable and biocompatible polymers, microspheres can provide controlled and sustained drug release, enhance gastrointestinal stability, and improve patient compliance through reduced dosing frequency. Furthermore, microspheres offer the potential to minimize interpatient variability and adverse effects by ensuring more consistent plasma drug concentrations⁴.

Recent advances in formulation techniques including ionic gelation, solvent evaporation, and emulsion coacervation have enabled the development of microspheres with tailored release profiles and improved encapsulation efficiency. Polymers such as chitosan, Eudragit RL100, and PLGA have been extensively investigated for their ability to modulate drug release and enhance absorption⁵. These innovations not only address the pharmacokinetic challenges of dabigatran but also open new avenues for the design of next-generation anticoagulant therapies⁶.

This review aims to provide a comprehensive overview of the current progress in microsphere-based delivery of dabigatran, highlighting formulation strategies, polymeric approaches, pharmacokinetic improvements, and translational potential in clinical practice. By examining these advances, the article underscores the role of microsphere technology in shaping the future of controlled release anticoagulant therapy.

MICROSPHERES TECHNOLOGY IN DRUG DELIVERY

Microspheres are small spherical particles, with diameters 10 μm to 1000 μm . Microspheres play an important role to improve bioavailability of conventional drugs and minimizing side effects. The main advantages of microspheres as drugs delivery system are the controlled release and enhance permeability and bioavailability of the drug content⁷. Microencapsulation used for

retarding the drug release from dosage forms and reduced the adverse effects, increased the patient for compliance. In this technique, aqueous insoluble core (drugs) coated with an aqueous insoluble coat (polymer) by emulsion solvent diffusion evaporation technique for sustained release drug delivery system⁸. There are two types of microspheres:

- Microcapsules
- Micrometrics

Advantages of Microspheres⁹

- Microspheres provide constant and prolonged therapeutic effect.
- Reduces the dosing frequency and thereby improve the patient compliance.
- They could be injected into the body due to the spherical shape and smaller size.
- Better drug utilization will improve the bioavailability and reduce the incidence or intensity of adverse effects.
- Microsphere morphology allows a controllable variability in degradation and drug release.

Limitation of Microspheres¹⁰

Some of the disadvantages were found to be as follows

- The modified release from the formulations.
- The release rate of the controlled release dosage form may vary from a variety of factors like food and the rate of transit though gut.
- Differences in the release rate from one dose to another.
- Controlled release formulations generally contain a higher drug load and thus any loss of integrity of the release characteristics of the dosage form may lead to potential toxicity.
- Dosage forms of this kind should not be crushed or chewed.

Types of Microspheres¹¹

- a) Bioadhesive microspheres
- b) Magnetic microspheres
- c) Floating microspheres
- d) Radioactive microspheres
- e) Polymeric microspheres
 - i) Biodegradable polymeric microspheres
 - ii) Synthetic polymeric microspheres

General preparation techniques of microspheres

Microencapsulation is the process in which small droplets or particles of liquid or solid material are surrounded or coated by a continuous film of polymeric material. Firstly the microencapsulation

procedure was discovered by Bungen burg de Jon and Kan in 1931 and which were deal with preparation of gelatin sphere and use of gelatin coaceravation process. Microcapsule is one of the micro particulate system and are prepared to obtain prolonged or controlled drug delivery, to improve bioavailability or stability and to target drug to specific sites. Industrial applications of microencapsulation were first introduced at the end of 1950s in the production of pressure sensitive copying papers for the encapsulation of hydrophobic solution of leucodyes. Since then microencapsulation has been constantly improved. It has been characterized by rapid growth of patent application, reflecting industrial research & development. Microencapsulation is a useful method which, prolongs the duration of drug effect significantly and improves patient compliance¹². Several physical and chemical methods have been developed for the production of microspheres:

- a) Air suspension
- b) Coacervation phase separation
- c) Multiorifice-centrifugal process
- d) Pan coating
- e) Spray drying and congealing
- f) Solvent evaporation techniques
- g) Polymerization technique
- h) Single emulsion technique
- i) Double emulsion technique
- j) Solvent extraction
- k) Quassi emulsion solvent diffusion

DABIGATRAN: PHARMACOLOGICAL PROFILE

Dabigatran etexilate is an oral prodrug that converts to dabigatran, a direct, competitive, and reversible thrombin inhibitor. It is used to prevent stroke and systemic embolism in atrial fibrillation and to treat or prevent venous thromboembolism. Its pharmacological profile includes predictable pharmacokinetics, but low oral bioavailability ($\approx 6-7\%$), dependence on P-glycoprotein transport, and renal elimination¹³.

Mechanism of Action: Dabigatran directly inhibits thrombin (Factor IIa), the key enzyme in the coagulation cascade. It blocks both free thrombin and clot-bound thrombin, preventing fibrin formation. Unlike warfarin, it does not affect vitamin K metabolism, offering a more predictable anticoagulant effect¹⁴.

Produces dose-dependent anticoagulation by prolonging clotting times (aPTT, thrombin time, ecarin clotting time). Predictable response allows fixed dosing without routine coagulation monitoring, unlike warfarin¹⁵.

FORMULATION STRATEGIES FOR DABIGATRAN MICROSPHERES

Polymer Selection: The choice of polymer is central to microsphere design, as it determines drug

encapsulation efficiency, release kinetics, and stability. Chitosan-based microspheres (mucoadhesive properties, improved absorption), Eudragit RL100 microspheres (controlled release, stability), PLGA and other advanced polymers, Encapsulation efficiency and particle characterization¹⁶.

Preparation Techniques: Several methods have been explored to encapsulate dabigatran into microspheres¹⁷.

Ionic Gelation: Involves cross-linking chitosan with agents like sodium tripolyphosphate. It produces spherical, mucoadhesive particles with high encapsulation efficiency¹⁸.

Solvent Evaporation (PLGA-based): Drug-polymer solution emulsified in aqueous phase, solvent evaporates to form microspheres. Allows fine control over particle size and drug release¹⁹.

Spray Drying: Rapid drying of drug-polymer solution into microspheres. This is scalable and suitable for industrial production²⁰.

Emulsion Coacervation (Eudragit-based): Drug and polymer dispersed in organic solvent, emulsified, then solidified. Produces stable microspheres with controlled release properties²¹.

PHARMACOKINETIC AND PHARMACODYNAMIC IMPROVEMENTS

Enhanced oral bioavailability: Conventional dabigatran etexilate has low oral bioavailability ($\sim 6-7\%$) due to poor permeability and efflux by intestinal P-glycoprotein²².

Microsphere encapsulation improves absorption by: Mucoadhesion (chitosan-based systems prolong residence time in the gut), Protection from degradation in gastric conditions, bypassing efflux transporters, leading to higher systemic drug levels²³.

Sustained release and reduced dosing frequency: Microspheres provide gradual drug release over 12–24 hours, avoiding sharp peaks and troughs in plasma concentration. This reduces the risk of bleeding complications associated with high peak levels. Sustained release also allows for reduced dosing frequency, improving patient compliance²⁴.

Reduced inter-patient variability: Standard dabigatran shows variability due to differences in gut absorption and renal clearance. Microspheres stabilize drug release and absorption, leading to more predictable pharmacokinetics across patients. This consistency is crucial for anticoagulants, where under- or over-dosing can have serious consequences²⁵.

Comparative studies with conventional formulations: By maintaining steady plasma concentrations, microspheres ensure continuous thrombin inhibition²⁶.

CLINICAL AND TRANSLATIONAL POTENTIAL²⁷

- Patient compliance and therapeutic predictability
- Safety considerations (bleeding risk, dose control)
- Potential for personalized anticoagulant therapy
- Regulatory and industrial perspectives

CHALLENGES AND FUTURE DIRECTIONS²⁸

- Scale-up and manufacturing hurdles
- Stability in gastrointestinal conditions
- Cost-effectiveness and accessibility
- Emerging trends: nanospheres, hybrid systems, targeted delivery

CONCLUSION:

The development of microsphere-based delivery systems for dabigatran etexilate represents a significant advancement in the field of oral anticoagulant therapy. Conventional formulations of dabigatran are limited by low bioavailability, dependence on intestinal transporters, and renal clearance, which can lead to variability in therapeutic response and dosing challenges. Microsphere technology offers a promising solution by enabling controlled and sustained release, enhancing gastrointestinal stability, and improving drug absorption through the use of biocompatible polymers such as chitosan, Eudragit RL100, and PLGA.

Formulation strategies including ionic gelation, emulsion coacervation, solvent evaporation, and spray drying have demonstrated the ability to produce microspheres with high encapsulation efficiency, favorable particle morphology, and predictable release kinetics. These innovations not only address the pharmacokinetic shortcomings of dabigatran but also hold the potential to reduce dosing frequency, improve patient compliance, and minimize adverse effects such as bleeding by avoiding peak plasma fluctuations.

Despite these advances, several challenges remain. Issues related to scale-up, manufacturing reproducibility, long-term stability, and cost-effectiveness must be resolved before microsphere-based dabigatran formulations can be widely adopted in clinical practice. Furthermore, rigorous clinical trials are needed to validate the translational potential of these systems and ensure safety across diverse patient populations.

In conclusion, microsphere-based delivery of dabigatran exemplifies how drug delivery innovations can transform established therapies, offering a pathway toward more predictable, patient-friendly, and effective anticoagulant

regimens. Continued research into polymer science, formulation optimization, and clinical evaluation will be essential to fully realize the promise of controlled release anticoagulant therapy in the future.

REFERENCES:

1. Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. *Indian J. Anaesth.* 2014, 58, 515–523.
2. Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. *N. Engl. J. Med.* 2009, 361, 1139–1151.
3. J. Lee, R. Patel, Wastewater treatment by polymeric microspheres: a review. *Polymers* (2022).
4. Ogunjimi AT, Fiegel J, Brogden NK. Design and characterization of spray-dried chitosan-naltrexone microspheres for microneedle-assisted transdermal delivery. *Pharmaceutics.* 2020;12(6):496.
5. Bonany M, Del-Mazo-Barbara L, Espanol M, Ginebra MP. Microsphere incorporation as a strategy to tune the biological performance of bioinks. *J Tissue Eng.* 2022;13:20417314221119895.
6. Xiao Q, Ji Y, Xiao Z, Zhang Y, Lin H, Wang Q. Novel multifunctional NaYF₄:Er³⁺,Yb³⁺/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. *Chem Commun (Camb).* 2013;49(15):1527–1529.
7. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent Extraction/Evaporation: reviewing the state of the art of microsphere preparation process technology. *J Controlled Release* 2004;102:313–32.
8. Sahil K, Akanksha M, Premjeet S, Bilandi A, Kapoor B, Microsphere: a review. *Int J Res Pharm Chem* 2011;1:2231-781.
9. Kavita Kunchu, Raje Veera Ashwani et al. Albumin Microspheres: A Unique system as drug delivery carriers for non steroidal antiinflammatory drugs. 2010;5(2):12.
10. Saralidze K., Koole L.H., Knetsch M. L. W. Polymeric microspheres for medical applications, *Materials.* 2010;3:3537-64.
11. Kappor D, Patel M, Vyas RB, Lad C, Tyagi BL, A review on microsponge drug delivery system, *Journal of drug delivery and therapeutics,* 2014;4(5):29-35.
12. Wieland-Berghausen, S.; Schote, U.; Frey, M.; Schmidt, F. Comparison of microencapsulation techniques for the water-soluble drugs nitenpyram and clomipramine HCl. *J. Controlled Release* 2002, 85 (1), 35–43.

13. van Ryn J., Hauel N., Waldmann L., Wienen W. Dabigatran inhibits both clot-bound and fluid phase thrombin in vitro: effects compared to heparin and hirudin [abstract no. 3998]. *Blood* (ASH Annual Meeting Abstracts) 2007 Nov 16; 110 (11).
14. Mackman N. Triggers, targets and treatments for thrombosis. *Nature*. 2008;451(7181):914-918.
15. Eriksson BI, Dahl OE, Buller HR, et al, for the BISTRO II Study Group. A new oral direct thrombin inhibitor, dabigatran etexilate, compared with enoxaparin for prevention of thromboembolic events following total hip or knee replacement: the BISTRO II randomized trial. *J Thromb Haemost*. 2005;3(1):103-111.
16. N. Soman, K.S. Rathore, Formulation and evaluation of mucoadhesive chitosan microspheres of carvedilol for nasal administration. IP Int. J. Comp. Adv. Pharm. (2023).
17. A. Kumar, Microspheres: a review. Pharm. Pharm. Sci. World J (2017).
18. u Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. *Drug Deliv*. 2021 Dec;28(1):1397-1418.
19. Microfluidic preparation of monodisperse PLGA-PEG/PLGA microspheres with controllable morphology for drug release. *Lab Chip*. 2024 Sep 24;24(19):4623-4631.
20. Oh JE, Nam YS, Lee KH, Park TG. Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres. *J Control Release*. 1999 Feb 22;57(3):269-80.
21. A.N. Yawalkar, M.A. Pawar, P.R. Vavia, Microspheres for targeted drug delivery-a review on recent applications. *J. Drug Delivery Sci. Technol.* **75**, 103659 (2022).
22. Härtter S, Koenen-Bergmann M, Sharma A, Nehmiz G, Lemke U, Timmer W, Reilly PA. Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampicin. *Br J Clin Pharmacol*. 2012 Sep;74(3):490-500.
23. Kaurav H, Hari Kumar SL, Kaur A. Mucoadhesive microspheres as carriers in drug delivery: a review. *Int. j drug dev research*. 2012;21-34.
24. Pranali Adsul, 2Ajay Shinde and 3 Suvarna Sonawane “overview: formulation aspect of mucoadhesive microsphere and its pharmaceutical application” 2022, 9(4), 463-471.
25. Eisert WG, Hauel N, Stangier J, et al. Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. *Arterioscler Thromb Vasc Biol*. 2010;30(10):1885–1889.
26. Parasrampuria DA, Truitt KE. Pharmacokinetics and pharmacodynamics of edoxaban, a non-vitamin K antagonist oral anticoagulant that inhibits clotting factor Xa. *Clin Pharmacokinet*. 2016;55(6):641–655.
27. Shanthi N.C., Dr.Gupta R., Mahato K.A., Traditional and Emerging Applications of Microspheres: A Review, *International Journal of Pharm Tech Research*. 2010; 2(1):675-681.
28. P. Hyma and B.Jyotsna. Formulation and evaluation of gastroretentive floating microspheres of acyclovir. *J. Global Trends Pharm Sci*, 2020; 11 (4): 8521 – 8528.