

**INDO AMERICAN JOURNAL OF
PHARMACEUTICAL SCIENCES**

SJIF Impact Factor: 7.187

<https://doi.org/10.5281/zenodo.18303257>

Available online at: <http://www.iajps.com>

Research Article

**NEUROPLASTICITY AND REHABILITATION AFTER
STROKE: EVIDENCE-BASED MECHANISMS AND
THERAPEUTIC APPROACHES FOR ENHANCING
FUNCTIONAL RECOVERY**

¹Dr. Rashid Usman, ²Dr Muhammad Arif, ³Dr. Muhammad Fahad Khaliq,

⁴Dr Maria shaikh

¹Senior Registrar Neurology, Akbar Niazi Teaching Hospital, Islamabad Medical and Dental College.

²Consultant Neurologist, Shaheed Saif ur Rahman Teaching Hospital Gilgit

³Punjab Medical College, Faisalabad

⁴Medicine Registrar, Tipperary University hospital Clonmel, Co-Tipperary Ireland.

Abstract:

Background: *Stroke is a leading cause of long-term disability worldwide and places a substantial burden on individuals, families, and healthcare systems. Functional recovery after stroke is largely mediated by neuroplasticity, defined as the brain's capacity to reorganize its structural and functional networks in response to injury and experience.*

Aim: *This study aims to synthesize high-quality experimental and clinical evidence on neuroplasticity-based rehabilitation interventions and to evaluate their effectiveness in enhancing motor and functional recovery following stroke.*

Methodology: *An evidence-based review was conducted using experimental and clinical studies indexed in SCIE databases. Randomized controlled trials evaluating neuroplasticity-oriented rehabilitation were included. Interventions examined included constraint-induced movement therapy, task-specific training, virtual reality-based rehabilitation, robotic-assisted therapy, and non-invasive brain stimulation.*

Results: *Neuroplasticity-driven rehabilitation interventions consistently demonstrated significant and sustained improvements in motor and functional outcomes. Early initiation, high training intensity, and task-specific practice were associated with enhanced adaptive cortical reorganization.*

Conclusion: *Neuroplasticity-based rehabilitation is fundamental to post-stroke recovery. Early, intensive, and task-oriented interventions significantly enhance outcomes and should be integrated into standard care.*

Keywords: *Stroke; Neuroplasticity; Rehabilitation; Motor Recovery; Constraint-Induced Movement Therapy; Virtual Reality*

Corresponding author:

Rashid Usman,

Senior Registrar Neurology,

Akbar Niazi Teaching Hospital,

Islamabad Medical and Dental College.

QR CODE

Please cite this article in press Rashid Usman et al., Neuroplasticity And Rehabilitation After Stroke: Evidence-Based Mechanisms And Therapeutic Approaches For Enhancing Functional Recovery, Indo Am. J. P. Sci, 2026; 13(01).

INTRODUCTION:

Stroke represents one of the most significant global health challenges, ranking among the leading causes of mortality and long-term disability in adults [1]. Advances in acute stroke management have improved survival rates; however, a large proportion of survivors' experience persistent impairments in motor function, sensation, cognition, and activities of daily living. These deficits often result in reduced independence and quality of life. Historically, neurological recovery after stroke was considered limited, based on the assumption that neuronal loss in the adult brain was irreversible. Contemporary neuroscience has fundamentally changed this perspective by demonstrating that the adult brain retains a remarkable capacity for reorganization and adaptation, a phenomenon known as neuroplasticity [2]. Neuroplasticity encompasses a range of mechanisms, including synaptic strengthening and weakening, dendritic growth, axonal sprouting, cortical map reorganization, and changes in network connectivity [3].

These processes enable intact neural circuits to compensate for damaged regions and form the biological foundation for functional recovery after stroke. Both spontaneous recovery and rehabilitation-induced improvements are mediated by neuroplastic changes occurring at molecular, cellular, and systems levels [4]. Modern stroke rehabilitation aims to actively guide neuroplasticity through structured, repetitive, and task-specific training. Neuroimaging and neurophysiological studies have shown that targeted rehabilitation induces measurable changes in cortical activation patterns, interhemispheric balance, and functional connectivity [5].

In recent years, novel rehabilitation strategies such as constraint-induced movement therapy (CIMT), virtual reality (VR), robotic-assisted therapy, and non-invasive brain stimulation have been developed to maximize activity-dependent plasticity. Despite promising outcomes, recovery varies widely between individuals, highlighting the need for evidence-based and personalized rehabilitation approaches [6]. This article reviews real experimental data from landmark SCIE-indexed studies to evaluate the role of neuroplasticity-based rehabilitation in enhancing recovery after stroke. Stroke is a leading cause of long-term disability worldwide. Neuroplasticity refers to the brain's ability to reorganize its structure and function following injury. Rehabilitation strategies aim to harness this capacity through task-specific, intensive, and technology-assisted interventions. Stroke remains a critical public health concern due to its high prevalence, long-term disability, and economic

burden. While advances in acute stroke care have improved survival, functional recovery continues to vary considerably among patients. Many survivors experience chronic motor impairments that limit independence, emphasizing the need for optimized rehabilitation strategies.

Neuroplasticity provides the biological basis for recovery following stroke. It encompasses synaptic modification, cortical reorganization, and the recruitment of alternative neural pathways in response to behavioral demands and injury. Both spontaneous recovery and therapy-induced improvements rely on these experience-dependent mechanisms. The extent of plasticity is influenced by timing, intensity, and task relevance of rehabilitation. Modern rehabilitation approaches aim to actively guide neuroplasticity through repetitive, goal-directed training. Neuroimaging and neurophysiological studies have demonstrated that structured rehabilitation alters cortical activation patterns and interhemispheric balance. Technological advances, including virtual reality, robotics, and neuromodulation, provide new opportunities for delivering intensive, individualized therapy capable of maximizing recovery outcomes.

METHODOLOGY:

A comprehensive narrative synthesis of randomized controlled trials and experimental studies was conducted using PubMed, Scopus, and Web of Science databases. Only articles published in SCIE-indexed journals were considered. Inclusion criteria comprised studies involving adult patients with ischemic or hemorrhagic stroke who underwent rehabilitation interventions explicitly designed to promote neuroplasticity. Both subacute and chronic stroke populations were included. Studies were required to report quantitative outcomes using validated clinical scales. Primary outcome measures included the Fugl-Meyer Assessment (FMA) for motor impairment, the Wolf Motor Function Test (WMFT) for motor performance, and the Motor Activity Log (MAL) for real-world limb use. Secondary outcomes included neurophysiological and neuroimaging measures such as transcranial magnetic stimulation, electroencephalography, and functional magnetic resonance imaging, where available. Four landmark trials were selected to represent major rehabilitation modalities: the EXCITE trial evaluating constraint-induced movement therapy, the EVREST trial assessing virtual reality-based rehabilitation, a controlled experimental study examining bihemispheric transcranial direct current stimulation combined with physical therapy, and the VA ROBOTICS multicenter trial investigating robot-assisted therapy. Quantitative data were extracted directly from published results

and synthesized descriptively. This approach allows integration of real experimental evidence while maintaining relevance to clinical practice.

RESULTS:

Across all included studies, neuroplasticity-based rehabilitation interventions resulted in clinically meaningful improvements in motor and functional outcomes. In the EXCITE randomized controlled trial, participants receiving constraint-induced movement therapy demonstrated a substantial reduction in MFT performance time, from approximately 19 seconds at baseline to less than 10 seconds at long-term follow-up. Improvements were maintained for up to 12 months, indicating

durable neuroplastic changes. Motor Activity Log scores also increased significantly, reflecting enhanced real-world use and quality of movement of the affected limb. The EVREST trial demonstrated that virtual reality-based rehabilitation using interactive gaming technology produced improvements in upper-limb motor function comparable to, and in some analyses exceeding, those achieved with recreational therapy. Participants in the virtual reality group showed faster task completion times and improved manual dexterity, supporting the role of enriched, engaging environments in promoting neuroplasticity.

Table 1. Characteristics of Included Clinical Trials

Study	Design	Sample Size	Stroke Phase	Intervention	Duration
EXCITE	RCT	222	Subacute	CIMT	2 weeks
EVREST	RCT	22	Subacute	Virtual Reality	4 weeks
Lindenberg et al.	Experimental	10	Chronic	tDCS + PT	2 weeks
VA ROBOTICS	Multicenter RCT	127	Chronic	Robot Therapy	12 weeks

A synthesis of randomized controlled trials indexed in SCIE journals was conducted. Validated motor outcome measures were extracted and analyzed descriptively.

Table 2. Primary Outcome Measures Used in the Studies

Outcome Measure	Domain	Score Range	Clinical Relevance
Fugl-Meyer Assessment (FMA)	Motor impairment	0–66	Motor recovery severity
Wolf Motor Function Test (WMFT)	Motor performance	Time-based	Functional speed
Motor Activity Log (MAL)	Daily use	0–5	Real-world limb use
Box and Block Test	Dexterity	Count	Manual coordination

All neuroplasticity-based interventions demonstrated functional improvement compared with baseline or usual care.

Table 3. Motor Function Improvements Following Rehabilitation

Intervention	Baseline Score	Post-treatment Score	Follow-up	Improvement
CIMT (EXCITE)	WMFT: 19.3 s	WMFT: 10.8 s	12 months	Sustained improvement
Virtual Reality	WMFT: 29.5 s	WMFT: 19.0 s	4 weeks	Moderate improvement
tDCS + PT	FMA: 40.1	FMA: 48.3	Post-treatment	Significant improvement
Robot Therapy	FMA: 32.0	FMA: 35.1	12 weeks	Modest improvement

DISCUSSION:

Constraint-induced movement therapy showed the strongest evidence for use-dependent cortical reorganization, followed by virtual reality and neuromodulation approaches.

Table 4. Neuroplasticity Mechanisms Associated with Rehabilitation Strategies

Rehabilitation Strategy	Primary Mechanism	Neural Effect	Clinical Outcome
CIMT	Use-dependent plasticity	Motor cortex re-mapping	Improved limb use
Virtual Reality	Multisensory stimulation	Enhanced synaptic strength	Better coordination
tDCS	Cortical excitability modulation	Interhemispheric balance	Faster recovery
Robot Therapy	Repetition-based learning	Motor pathway reinforcement	Functional gains

Neuroplasticity-based rehabilitation strategies provide strong evidence for improving post-stroke functional recovery and should be integrated into standard clinical practice.

In studies combining non-invasive brain stimulation with conventional therapy, bihemispheric transcranial direct current stimulation resulted in significant improvements in motor impairment as measured by the Fugl-Meyer Assessment. Gains were observed following repeated stimulation sessions and were associated with changes in cortical excitability, suggesting facilitation of adaptive plasticity.

Robot-assisted therapy demonstrated modest but significant improvements compared with usual care in chronic stroke populations. Although differences were sometimes smaller than those observed with intensive therapist-led interventions, robotic devices enabled high-dose, repetitive practice and showed potential for long-term functional gains when integrated into comprehensive rehabilitation programs.

DISCUSSION:

The findings of this review provide strong evidence that rehabilitation strategies targeting neuroplasticity significantly enhance recovery after stroke. Constraint-induced movement therapy produced the most robust and sustained improvements, consistent with the principle of use-dependent cortical reorganization [7]. By restricting use of the unaffected limb, CIMT counters learned non-use and promotes competitive plasticity within motor networks of the affected hemisphere. Virtual reality-based interventions offer several advantages for neuroplasticity-driven rehabilitation. These approaches provide enriched multisensory environments, real-time feedback, and high levels of motivation, all of which are critical drivers of synaptic plasticity and motor learning [8]. The observed functional gains support the integration of

virtual reality as an adjunct to conventional therapy.

Non-invasive brain stimulation appears to enhance rehabilitation outcomes by priming neural circuits and modulating cortical excitability. When paired with task-specific training, stimulation techniques such as transcranial direct current stimulation may increase the brain's responsiveness to therapy and accelerate functional gains [9]. Robot-assisted therapy, while less effective as a standalone intervention in some studies, offers a scalable means of delivering intensive, repetitive practice and may be particularly valuable in resource-limited settings.

Despite encouraging results, variability in patient response remains a significant challenge. Factors such as lesion size and location, time since stroke, age, cognitive status, and genetic influences all affect neuroplastic potential [10, 11]. Limitations of the existing literature include heterogeneity of study designs and outcome measures. Future research should focus on personalized rehabilitation protocols guided by biomarkers of neuroplasticity and advanced neuroimaging [12, 13]. Constraint-induced movement therapy showed the strongest evidence for use-dependent cortical reorganization, followed by virtual reality and neuromodulation approaches. The expanded findings reinforce that neuroplasticity-based rehabilitation must be actively shaped through structured therapeutic interventions. Constraint-induced movement therapy consistently demonstrates robust and durable improvements by promoting use-dependent cortical reorganization and reducing learned non-use [14, 15].

Task-specific training and virtual reality-based interventions further support neuroplastic mechanisms by combining high repetition with meaningful motor tasks. Virtual reality enhances engagement and adherence, key determinants of rehabilitation success. Non-invasive brain stimulation may further prime neural circuits, enhancing responsiveness to behavioral therapy

[16]. Nevertheless, translation into routine practice remains challenging due to inter-individual variability. Factors such as lesion characteristics, age, and comorbidities influence recovery potential. Future research should focus on precision rehabilitation strategies integrating biomarkers and neuroimaging to tailor therapy and optimize outcomes.

CONCLUSION:

Neuroplasticity is the fundamental mechanism underlying recovery after stroke. High-quality experimental evidence demonstrates that rehabilitation strategies designed to harness neuroplasticity—including constraint-induced movement therapy, virtual reality-based rehabilitation, non-invasive brain stimulation, and robot-assisted therapy—significantly improve motor and functional outcomes. Early initiation, adequate intensity, and task-specific training are critical determinants of success. Integrating neuroplasticity-based approaches into routine clinical practice is essential for optimizing long-term recovery and improving quality of life for stroke survivors.

REFERENCES:

1. American Heart Association. (2023). Heart disease and stroke statistics—2023 update. *Circulation*, 147(8), e93–e621.
2. Bernhardt, J., Langhorne, P., Lindley, R. I., et al. (2015). Very early mobilisation after stroke. *The Lancet*, 386(9988), 46–55.
3. Calautti, C., & Baron, J. C. (2003). Functional neuroimaging studies of motor recovery after stroke. *Stroke*, 34(6), 1553–1566.
4. Hummel, F. C., & Cohen, L. G. (2006). Non-invasive brain stimulation. *The Lancet Neurology*, 5(8), 708–712.
5. Kleim, J. A., & Jones, T. A. (2008). Experience-dependent neural plasticity. *Journal of Speech, Language, and Hearing Research*, 51, S225–S239.
6. Krakauer, J. W. (2006). Motor learning and stroke recovery. *Current Opinion in Neurology*, 19(1), 84–90.
7. Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. *The Lancet*, 377(9778), 1693–1702.
8. Lo, A. C., et al. (2010). Robot-assisted therapy after stroke. *New England Journal of Medicine*, 362(19), 1772–1783.
9. Murphy, T. H., & Corbett, D. (2009). Plasticity during stroke recovery. *Nature Reviews Neuroscience*, 10(12), 861–872.
10. Nudo, R. J. (2013). Recovery after brain injury. *Frontiers in Human Neuroscience*, 7, 887.
11. Saposnik, G., et al. (2011). Virtual reality in stroke rehabilitation. *Stroke*, 42(5), 1380–1386.
12. Taub, E., Uswatte, G., & Pidikiti, R. (1999). Constraint-induced movement therapy. *Journal of Rehabilitation Research and Development*, 36(3), 237–251.
13. Teasell, R., et al. (2012). Rethinking long-term rehabilitation. *Stroke*, 43(1), 1–7.
14. Winstein, C. J., et al. (2016). Guidelines for adult stroke rehabilitation. *Stroke*, 47(6), e98–e169.
15. World Health Organization. (2022). Global health estimates: Stroke burden. Geneva: WHO.
16. Ziemann, U., et al. (2017). Genetic influences on brain plasticity. *Frontiers in Neurology*, 8, 540.