Volume : 11, Issue : 07, July – 2024
Title:
DETERMINATION OF THE SPECIFIC ROTATION OF AN OPTICALLY ACTIVE SUBSTANCES BY USING POLARIMETER
Authors :
Rushikesh Ankush Dhanve, Yogiraj Prakash Muley, Sanket Anil Ingle
Abstract :
A half-shade polarimeter is an optical instrument used to measure the optical rotation of substances, typically liquid solutions containing optically active compounds. These compounds have the ability to rotate the plane of polarization of linearly polarized light, a property that can be exploited to determine the concentration, purity, or specific rotation of the substance.
Light waves are a form of electromagnetic radiation, consisting of oscillating electric and magnetic fields. In natural light, these oscillations occur in all possible planes perpendicular to the direction of propagation. Polarization is the process of filtering out light waves so that they only oscillate in a single plane, producing linearly polarized light. There are several methods for achieving polarization, including reflection, refraction, and absorption. In the case of Laurent’s Half-Shade Polarimeter, polarization is achieved using a polarizer, typically a Nicol prism or a polarizing film, which transmits light waves oscillating in a single plane while absorbing or reflecting the others.
Because light-field and polarization information contain much information of scenes, light-field and polarization imaging-systems can be used, e.g., for target detection, material classification, and biological analysis. However, most conventional systems rely on scanning or camera arrays, which tend to make the system both bulky and unstable. Here, we investigate a novel approach, snapshot polarimetryc , volumetric imaging (SPVI), which introduces micro-polarization elements into the paradigmatic focused light-field imaging system. SPVI can simultaneously capture and reconstruct the light-field and polarization information of a scene using a single detector. The validity and accuracy of SPVI are determined via Stoke-parameter measurements and depth measurements. Compared to conventional polarimetric light-field imagers, SPVI excels with respect to compactness, robustness, and low cost. Moreover, this tool might enable new possibilities for polarimetric 3D analysis.
Key words :Analyzer, Dextrorotatory, Optically active, Polarimeter, Polarizer, Specific rotation, Plan polarized light
Cite This Article:
Please cite this article in press Rushikesh AnkushDhanve et al., Determination Of The Specific Rotation Of An Optically Active Substances By Using Polarimeter.,Indo Am. J. P. Sci, 2024; 11 (07).
Number of Downloads : 10
References:
1. Arago (1811) “Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes et sur quelques autres nouveaux phénomènes d’optique” (Memoir on a remarkable modification that light rays experience during their passage through certain translucent substances and on some other new optical phenomena), Mémoires de la classe des sciences mathématiques et physiques de l’Institut Impérial de France, 1st part : 93–134.
2. ^ Herschel, J.F.W. (1820) “On the rotation impressed by plates of rock crystal on the planes of polarization of the rays of light, as connected with certain peculiarities in its crystallization,” Transactions of the Cambridge Philosophical Society, 1 : 43–51.
3. ^ Biot, J. B. (1815) “Phenomene de polarisation successive, observés dans des fluides homogenes” (Phenomenon of successive polarization, observed in homogeneous fluids), Bulletin des Sciences, par la Société Philomatique de Paris, 190–192.
4. ^ Biot (1818 & 1819) “Extrait d’un mémoire sur les rotations que certaines substances impriment aux axes de polarisation des rayons lumineux” (Extract from a memoir on the [optical] rotations that certain substances impress on the axes of polarization of light rays), Annales de Chimie et de Physique, 2nd series, 9 : 372–389; 10 : 63–81; for Biot’s experiments with turpentine vapor (vapeur d’essence de térébenthine), see pp. 72–81.
5. ^ Jump up to:a b A. Fresnel, “Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l’axe”, read 9 December 1822; printed in H. de Senarmont, E. Verdet, and L. Fresnel (eds.), Oeuvres complètes d’Augustin Fresnel, vol. 1 (1866), pp. 731–751; translated as “Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis”, Zenodo: 4745976, 2021 (open access); especially §13.
6. ^ Pasteur, L. (1850) “Recherches sur les propriétés spécifiques des deux acides qui composent l’acide racémique” (Researches on the specific properties of the two acids that compose the racemic acid), Annales de chimie et de physique, 3rd series, 28 : 56–99; see also appendix, pp. 99–117.
7. Essentials of Physical Chemistry by B.S. Bhal and G.D. Tuli 541 BAH/E
8. Text book of Physical Chemistry by S. Glasston 541 GLA/T
9. Organic Chemistry by L.O. Smith 547 SMI/O
10. Organic Chemistry by R.T. Morrison and R.N. Boyd.
11. -“Polarimeter | WordNet Search”. wordnetweb.princeton.edu. Retrieved 2023-04-27
Bass, Michael, Virendra N. Mahajan, and Stryland Eric W. Van. Handbook of Optics. Vol. 1. New York: McGraw-Hill, 2009. Print.
12. Horváth, Gábor, Varju, Dezsö. Polarized Light in Animal Vision: Polarization Patterns in Nature. Berlin: Springer, 2004. Print.
13. How It Works: Science and Technology. 3rd ed. Vol. 13. New York: Marshall Cavendish, 2003. Print.
14. “Polarimeter | WordNet Search”. wordnetweb.princeton.edu. Retrieved 2023-04-27.
15. “Polarimeter”. physics.kenyon.edu. Retrieved 2023-04-27.
16. Hart, C. (2002), Organische Chemie, Wiley-VCH, ISBN 3-527-30379-0
17. Carey, F. A.; R. J. Sundberg (2007). Advanced Organic Chemistry, Part A: Structure and Mechanisms. Advanced Organic Chemistry (Fifth ed.). Springer. p. 123. doi:10.1007/978-0-387-44899-2. ISBN 978-0-387-44897-8.
18. “Group :: Anton-Paar.com”. Anton Paar.
19. Polarimetry Archived 2011-09-27 at the Wayback Machine. chem.vt.edu.
20. ICUMSA Specification and Standard SPS-1 (1998)
21. ^ Schulz, M. (2006). High-accuracy polarimetric calibration of Quartz Control Plates (PDF). Rio de Janeiro, Brazil: XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development.
22. ^ Chandrasekhar, S. (1953). “Theoretical interpretation of the optical activity of quartz”. Proceedings of the Indian Academy of Sciences, Section A. 37 (3): 468. doi:10.1007/BF03052667. S2CID 93769450.
23. ^ “Polarimetric saccharimeters graduated in accordance with the ICUMSA, International Sugar Scale” (PDF). OIML R. 14. International Organization of Legal Metrology: 4. 1995.