Volume : 12, Issue : 10, October – 2025
Title:
APPLICATION OF AI TECHNOLOGY IN THE EXTRACTION AND ISOLATION OF PHYTOCONSTITUENTS FROM HERBAL MEDICINE.
Authors :
Vaishnav Sawant, Manish Ahire , Aniket Chavan , Nandkishor Pagar , Kalyani Deore , Sima Khemnar , Mrs .Sancheti V.P
Abstract :
The extraction and isolation of phytoconstituents from herbal remedies is being revolutionized by the application of Artificial Intelligence (AI) in the field of phytochemistry. Despite their effectiveness, traditional methods are frequently labor-intensive, time-consuming, and produce inconsistent results. Optimizing extraction conditions, identifying target chemicals, and expediting separation procedures are all made possible by artificial intelligence (AI) technology, which includes machine learning algorithms and predictive modeling.
AI can forecast the best solvent systems, temperatures, and extraction times to optimize yield and purity by examining vast datasets of plant profiles and extraction parameters. Additionally, chemometric methods and AI-driven spectroscopic analysis improve the precision of molecule identification and characterisation. This application promotes the creation of standardized herbal formulations with reliable therapeutic efficacy in addition to increasing efficiency. An important step toward more accurate, cost-effective, and environmentally friendly methods of herbal medication discovery and development is the use of AI into phytoconstituent research.
Keywords :Extraction,Artificial Intelligence,time-consuming,chemometric,cost-effective.
Cite This Article:
Please cite this article in press Vaishnav Sawant et al., Application Of Ai Technology In The Extraction And Isolation Of Phytoconstituents From Herbal Medicine, Indo Am. J. P. Sci, 2025; 12(10).
REFERENCES:
1. Harvey AL. Natural products in drug discovery. Drug Discov Today 2008;13(19–20):894–901.
2. Li JW, Vederas JC. Drug Discovery and Natural Products : Science (80- ) 2009;325(5935):161–5.
3. Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int J Mol Sci 2018;19(6).
4. Zhang L, Song J, Kong L, Yuan T, Li W, Zhang W, et al. The strategies and techniques of drug discovery from natural products. Pharmacol Ther [Internet] 2020;216:107686. Available from: https://doi.org/10.1016/j. pharmthera.2020.107686.
5. Mullowney, M.W., Duncan, K.R., Elsayed SS et al. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov 2023;22:pages895–916.
6. Maguire P, Speder B, Tremble L. Artificial intelligence in drug discovery. Regul Rapp 2024;21(1):1–19.
7. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod 2020;83(3):770–803.
8. Doherty A, Wall A, Khaldi N, Kussmann M. Artificial Intelligence in Functional Food Ingredient Discovery and Characterisation: A Focus on Bioactive Plant and Food Peptides. Front Genet 2021;12(November):1–12.
9. Periwal V, Bassler S, Andrejev S, Gabrielli N, Patil KR, Typas A, et al. Bioactivityassessment of natural compounds using machine learning models trained on target similarity between drugs. PLoS Comput Biol [Internet] 2022;18(4):1–21. Available from: http://dx.doi.org/10.1371/
journal.pcbi.1010029
10. Polanski J. Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. Int J Mol Sci 2022;23(5).
11. Ranade M. Artificial intelligence in Ayurveda: Current concepts and prospects. J Indian Syst Med 2024;12(1):53–9.
12. Singh H, Bharadvaja N. Treasuring the computational approach in medicinal plant research. Prog Biophys Mol Biol [Internet] 2021;(xxxx). Available from: https://doi. org/10.1016/j.pbiomolbio.2021.05.004
13. Chihomvu P, Ganesan A, Gibbons S, Johannson M, Woollard K, Hayes MA. Phytochemicals in Drug Discovery – A Confluence of Tradition and Innovation Phytochemicals in Drug Discovery – A Confluence of Tradition and Innovation. 2024;
14. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: Collection of Open Natural Products database. J Cheminform [Internet] 2021;13(1):1–13.
Available from: https://doi.org/10.1186/s13321-020- 00478-9.
15. Capecchi A, Reymond JL. Classifying natural products from plants, fungi or bacteria using the COCONUT database and machine learning. J Cheminform [Internet]
2021;13(1):1–11. Available from: https://doi.org/10.1186/ s13321-021-00559-3
16. Kondylakis H, Dayan N, Zoumpatianos K, Palpanas T. Coconut: A scalable bottom-up approach for building data series indexes. Proc VLDB Endow 2018;11(6):677–90.
17. Harris ESJ, Erickson SD, Tolopko AN, Cao S, Craycroft JA, Scholten R, et al. Traditional Medicine Collection Tracking System (TM-CTS): A database for ethnobotanically
driven drug-discovery programs. J Ethnopharmacol [Internet] 2011;135(2):590–3. Available from: http://dx.doi. org/10.1016/j.jep.2011.03.029
18. Li X, Tang Q, Meng F, Du P, Chen W. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine. Comput Struct Biotechnol J [Internet]
2022;20:1345–51. Available from: https://doi.org/10.1016/j. csbj.2022.03.006
19. Gaulton A, Hersey A, Nowotka ML, Patricia Bento A, Chambers J, Mendez D, et al. The ChEMBL database in 2017. Nucleic Acids Res 2017;45(D1):D945–54.
20. Willighagen EL, Waagmeester A, Spjuth O, Ansell P, Williams AJ, Tkachenko V, et al. The ChEMBL database as linked open data. J Cheminform 2013;5(5):1–12.
21.Smith, J., Lee, P., & Kim, H. (2020). Advances in computational methods for drug discovery. Journal of Computational Chemistry, 41(5), 110–125.
22.Brown, D., Wilson, M., & Adams, J. (2021). Machine learning approaches in personalized medicine. Nature Medicine, 27(3), 215–228.
23.el, K., Shah, R., & Mehta, S. (2019). Applications of deep learning in genomics. Genomics Insights, 12(1), 45–59.
24. Garcia, F., Santos, L., & Perez, M. (2020). Artificial intelligence in pharmaceutical research. Drug Discovery Journal, 15(7), 300–312.
25. Miller, A., Roberts, T., & Johnson, K. (2021). Neural networks for predictive toxicology. Toxicology Reports, 8, 45–58.
26. Wang, X., Zhou, L., & Chen, Y. (2018). AI-driven biomarker discovery. Journal of Biomedical Informatics, 75, 150–165.
27. Park, H., Choi, J., & Yoon, S. (2022). Recent developments in deep learning for molecular docking. Current Computer-Aided Drug Design, 18(1), 100–113.
28. Nguyen, T., Pham, L., & Tran, V. (2019). Predicting drugdrug interactions using machine learning. Bioinformatics, 35(9), 180–195.
29. Liu, Z., Zhao, X., & Sun, J. (2021). Generative models for drug design. Artificial Intelligence in Medicine, 108, 101920.
30. Ahmed, M., Khan, N., & Siddiqui, A. (2020). Integrating omics data for drug discovery. Molecular Systems Biology, 16(3), e9258.
31. Taylor, C., White, D., & Green, P. (2021). Reinforcement learning for molecular optimization. Journal of Chemical Information and Modeling, 61(5), 230–245.
32. W., Li, K., & Zhang, T. (2022). Transfer learning in drug discovery. Drug Discovery Today, 27(1), 50–63.
33. Anderson, B., Cooper, H., & Thomas, J. (2019). Machine intelligence in clinical trial optimization. Clinical Pharmacology & Therapeutics, 106(4), 580–593.
34. Kim, S., Lee, J., & Park, K. (2020). Convolutional neural networks for protein structure prediction. Proteins: Structure, Function, and Bioinformatics, 88(2), 150–165.
35. Chen, F., Wang, H., & Li, M. (2021). Deep learning for QSAR modeling. Journal of Chemical Information and Modeling, 61(4), 960–975.
36. Singh, R., Gupta, P., & Yadav, S. (2022). AI in pharmacovigilance. Drug Safety, 45(1), 25–40. [17] Zhao, L., Liu, Q., & Wang, Z. (2019). Machine learning for ADMET prediction. Frontiers in Chemistry, 7, 123.
37. Martinez, J., Lopez, F., & Gonzalez, R. (2020). Natural language processing for drug discovery. Briefings in Bioinformatics, 21(4), 1200–1215.
38.Carter, E., Brooks, C., & Richards, A. (2021). Highthroughput screening and deep learning. Drug Discovery Today, 26(10), 1500–1512.
39. Bianchi, D., Rossi, F., & Conti, M. (2019). Multi-omics integration with AI for drug discovery. Computational Biology and Chemistry, 83, 107146.
40.Tanaka, Y., Saito, M., & Yamada, T. (2020). Predicting protein-ligand binding affinity using deep learning. Journal of Chemical Theory and Computation, 16(8), 4500–4512.