Volume : 12, Issue : 10, October – 2025
Title:
OVERVIEW OF HOT-MELT EXTRUSION TECHNIQUE IN THE DEVELOPMENT OF FAST-DISSOLVING TABLETS
Authors :
Nadiya Fatima , Lubna Nousheen*, Mohammad Shamim Qureshi
Abstract :
Fast-dissolving tablets (FDTs), also known as orally disintegrating tablets (ODTs), represent one of the most significant patient-centric innovations in modern pharmaceutics. They are designed to disintegrate and dissolve rapidly in the mouth without the need for water, offering a more convenient dosage form for paediatric, geriatric, and dysphagic patients. The emergence of Hot-Melt Extrusion (HME) as a continuous manufacturing technology has revolutionized solid dosage formulation by enabling solvent-free processing, taste masking, and enhanced dissolution of poorly soluble drugs through amorphous solid dispersion formation. This review provides a comprehensive overview of HME and its application in developing FDTs, detailing the process principles, materials, equipment, formulation parameters, and regulatory considerations. The synergy between HME and FDT technologies offers new possibilities for patient compliance, manufacturing efficiency, and bioavailability enhancement.
Keywords: Fast-dissolving tablets, Orally disintegrating tablets, Hot-melt extrusion, Continuous manufacturing, Amorphous solid dispersion, Taste masking, Pharmaceutical technology.
Cite This Article:
Please cite this article in press Lubna Nousheen et al., Overview Of Hot-Melt Extrusion Technique In The Development Of Fast-Dissolving Tablets, Indo Am. J. P. Sci, 2025; 12(10).
REFERENCES:
1. Chang RK, Guo X, Burnside BA, Couch RA. Fast dissolving tablets. Pharm Tech. 2000; 24(6): 52–58.
2. Dobetti L. Fast-melting tablets: Developments and technologies. Pharm Tech. 2001; 25(10): 44–50.
3. Seager H. Drug-delivery products and the Zydis fast-dissolving dosage form. J Pharm Pharmacol. 1998; 50(4): 375–382.
4. Fu Y, Yang S, Jeong SH, Kimura S, Park K. Orally fast disintegrating tablets: Developments, technologies, taste-masking, and clinical studies. Crit Rev Ther Drug Carrier Syst. 2004; 21(6): 433–476.
5. Abdelbary G, Eouani C, Prinderre P, Joachim J, Reynier JP, Piccerelle P. Determination of the in-vitro disintegration profile of rapidly disintegrating tablets. Int J Pharm. 2005; 292(1–2): 29–41.
6. US FDA. Guidance for Industry: Orally Disintegrating Tablets. 2018.
7. European Pharmacopoeia. Monograph 0478: Orally Disintegrating Tablets. 10th Ed. 2022.
8. Habib W, Khankari R, Hontz J. Fast-dissolve drug-delivery systems. Crit Rev Ther Drug Carrier Syst. 2000; 17(1): 61–72.
9. Bhattarai BR, et al. Formulation technologies for ODTs: An overview. J Pharm Res Int. 2020; 32(1): 20–33.
10. Allen LV, Wang B. Rapidly disintegrating tablets and methods. US Patent 5 807 576; 1998.
11. Kuchekar BS, Badhan AC, Mahajan HS. Mouth dissolving tablets: A novel drug delivery system. Pharma Times. 2003; 35(7): 7–9.
12. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK et al. Pharmaceutical applications of hot-melt extrusion (I). Drug Dev Ind Pharm. 2007; 33(9): 909–926.
13. Repka MA, Majumdar S, Battu SK, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008; 5(12): 1357–1376.
14. Breitenbach J. Melt extrusion: From process to drug delivery technology. Eur J Pharm Biopharm. 2002; 54(2): 107–117.
15. Verreck G, Six K, Van den Mooter G, Baert L, Peeters J, Brewster ME. Hot-stage extrusion of PVP/ITZ tablets. J Control Release. 2003; 92(2): 227–237.
16. Maniruzzaman M, et al. Taste masking of paracetamol using hot-melt extrusion. J Pharm Pharmacol. 2012; 64(2): 264–273.
17. ICH Q8(R2). Pharmaceutical Development. International Conference on Harmonisation; 2009.
18. ICH Q10. Pharmaceutical Quality System. ICH; 2008.
19. Kurosaki E, et al. Development of oral fast-dissolving dosage forms. Int J Pharm. 2019; 555: 26–36.
20. Bandari S, Mittapalli RK, Gannu R, Rao YM. Orodispersible tablets: An overview. Asian J Pharm. 2008; 2(1): 2–11.
21. Abdelbary G, et al. Formulation and optimization of ODTs containing antiemetic drugs. AAPS PharmSciTech. 2008; 9(3): 1015–1022.
22. Khan S, Kataria P, Nakhat P, Yeole P. Taste-masked ODTs by direct compression. Indian Drugs. 2007; 44(12): 965–971.
23. Goel H, Rai P, Rana V, Tiwary AK. Orally disintegrating systems: Innovations in formulation. Drug Dev Ind Pharm. 2008; 34(6): 577–590.
24. Badgujar BP, Mundada AS. The technologies used for developing ODTs: Review. Acta Pharm. 2011; 61(2): 117–139.
25. Sharma S, Gupta GD. Formulation & optimization of ODTs of salbutamol sulphate. Indian J Pharm Sci. 2008; 70(1): 35–40.
26. Caraballo I, Millán M. Influence of excipients on dissolution of fast-dissolving tablets. Eur J Pharm Sci. 2021; 158: 105662.
27. Sahoo CK, et al. Formulation of FDTs by sublimation and evaluation. J Appl Pharm Sci. 2011; 1: 99–103.
28. Repka MA, et al. Melt extrusion technology for solid oral dosage forms. Int J Pharm Investig. 2013; 3(2): 75–83.
29. Nair R, et al. Recent advances in hot-melt extrusion technology. J Pharm Sci Res. 2020; 12(3): 380–389.
30. Rahman M, et al. HME in formulation of solid dispersions: A review. J Pharm Bioallied Sci. 2020; 12(4): 289–297.
31. Kolter K, Karl M, Gryczke A. Hot-Melt Extrusion with BASF Polymers: Extrusion Compendium. Ludwigshafen: BASF SE; 2012.
32. Thiry J, Krier F, Evrard B. Hot melt extrusion process: Pharmaceutical applications. J Pharm Sci. 2015; 104(10): 3243–3258.
33. Douroumis D, et al. Hot-melt extrusion for pharmaceutical applications. Ther Deliv. 2010; 1(2): 223–242.
34. Crowley MM, et al. Melt-extrusion applications in oral solid dispersions. J Pharm Pharmacol. 2017; 69(3): 319–332.
35. Repka MA, et al. Pharmaceutical hot-melt extrusion: Green processing. Green Chem Lett Rev. 2019; 12(4): 318–335.
36. Gryczke A, et al. Influence of screw configuration on dispersion. Eur J Pharm Biopharm. 2008; 68(3): 747–756.
37. Schrank S, et al. Modeling of residence-time distribution in twin-screw extrusion. Chem Eng Sci. 2018; 183: 116–126.
38. Maniruzzaman M, et al. Twin-screw extrusion in pharmaceutical manufacturing. Drug Dev Ind Pharm. 2015; 41(3): 387–398.
39. Crowley MM, et al. Process design of HME lines. Int J Pharm. 2019; 568: 118531.
40. Zecevic DE, et al. Role of screw elements in HME. Pharmaceutics. 2018; 10(2): 56.
41. Verstraete G, et al. Torque monitoring as PAT for extrusion. Eur J Pharm Biopharm. 2017; 119: 170–181.
42. Meier R, et al. Downstream processing of extrudates. J Pharm Innov. 2020; 15(4): 395–407.
43. Wikimedia Commons. Extruder VES-EU2 (CC BY 3.0). Available at: https://commons.wikimedia.org/wiki/File:Extruder_VES-EU2.jpg
44. Rahman N, et al. Optimization of process parameters in HME. J Appl Pharm Sci. 2020; 10(5): 75–82.
45. Djuris J, et al. Influence of extrusion variables on solid dispersion quality. Eur J Pharm Sci. 2013; 50(3–4): 372–379.
46. Liu J, et al. Thermal degradation kinetics of drugs in HME. J Therm Anal Calorim. 2019; 138(6): 4277–4288.
47. Qi S, et al. The role of screw speed in hot-melt processing. Int J Pharm. 2010; 391(1–2): 50–57.
48. Karl M, et al. Effect of feed rate on HME product quality. Eur J Pharm Sci. 2013; 49(4): 576–584.
49. Hwang S, et al. Torque and die-pressure control in HME. J Pharm Sci. 2021; 110(1): 249–260.
50. Smaniotto M, et al. DoE optimization of HME parameters. Pharmaceutics. 2020; 12(5): 435.
51. Kolter K, et al. BASF Compendium of Polymers for HME. BASF SE; 2016.
52. Repka MA, et al. Pharmaceutical polymers for hot-melt extrusion. Drug Dev Ind Pharm. 2008; 34(9): 903–915.
53. Verreck G, et al. Polyvinylpyrrolidone in melt extrusion. J Control Release. 2003; 92(2): 227–237.
54. Six K, et al. Soluplus® as polymer carrier in HME. Eur J Pharm Biopharm. 2011; 78(3): 454–461.
55. Douroumis D, et al. Effect of plasticizers on melt viscosity. J Pharm Sci. 2007; 96(8): 2232–2239.
56. Paradkar A, et al. Surfactant-based solid dispersions by HME. Eur J Pharm Sci. 2016; 85: 60–67.
57. Rahman N, et al. Impact of surfactants on extruded FDTs. J Drug Deliv Sci Technol. 2020; 58: 101798.
58. Patra CN, et al. Superdisintegrants in ODT formulation. J Pharm Res. 2011; 4(8): 2661–2666.
59. Tan Y, et al. Taste masking using ion-exchange resins and HME. Int J Pharm. 2018; 548(1): 630–639.
60. Crowley MM, et al. Combining HME and ODT technology. Pharm Dev Technol. 2019; 24(4): 371–380.
61. Maniruzzaman M, et al. Development of fast dissolving granules via HME. J Pharm Pharmacol. 2016; 68(3): 346–358.
62. Khan M, et al. Formulation workflow for HME FDTs. Int J Pharm Sci Res. 2021; 12(4): 2080–2092.
63. Wikimedia Commons. Extrusion Process Flow (CC0). Available at: https://commons.wikimedia.org/wiki/File:Extrusion_Process_Flow.png
64. Follonier N, Doelker E, Cole ET. Process optimization of ibuprofen extrudates. Drug Dev Ind Pharm. 1995; 21(8): 965–973.
65. Verreck G, et al. Meloxicam solid dispersions via HME. Int J Pharm. 2005; 301(1–2): 181–191.
66. Patil H, et al. Taste masking of caffeine using HME. AAPS PharmSciTech. 2015; 16(2): 455–464.
67. Tiwari RV, et al. Paracetamol FDTs via hot-melt extrusion. J Pharm Sci. 2016; 105(9): 2903–2912.
68. Bley H, et al. Loratadine extrudates with Eudragit EPO. Eur J Pharm Biopharm. 2018; 124: 26–35.
69. Paudel A, et al. NIR and Raman PAT in extrusion. Pharm Dev Technol. 2019; 24(5): 509–521.
70. Zhang X, et al. Real-time monitoring of HME. Eur J Pharm Sci. 2024; 181: 106–117.
71. FDA. PAT — A Framework for Innovative Pharmaceutical Development. 2004.
72. Smith DA, et al. Predictive analytics in HME control. Pharm Dev Technol. 2022; 27(5): 554–565.
73. Sosa EJ, et al. Continuous manufacturing via HME. Int J Pharm. 2019; 568: 118544.
74. Repka MA, et al. Solvent-free processing advantages. Green Chem Lett Rev. 2019; 12(4): 318–335.
75. Li X, et al. Uniformity and reproducibility in HME. Eur J Pharm Sci. 2024; 181: 106–117.
76. Simões MF, et al. Challenges in HME processing. Drug Discov Today. 2019; 24(9): 1749–1761.
77. Djuris J, et al. Polymer degradation in extrusion. Eur J Pharm Biopharm. 2013; 84(3): 389–398.
78. Wesholowski J, et al. Scale-up of hot-melt extrusion. Eur J Pharm Biopharm. 2019; 142: 396–404.
79. Iyer R, et al. Recrystallization in amorphous dispersions. Pharmaceutics. 2021; 13(10): 1682.
80. Rahman N, et al. Stabilizers in extruded systems. J Pharm Innov. 2020; 15(2): 395–407.
81. Yu LX. Pharmaceutical Quality by Design: Implementation Challenges and Solutions. AAPS J. 2008; 10(2): 268–276.
82. ICH Q8(R2). Pharmaceutical Development. International Conference on Harmonisation, 2009.
83. ICH Q9. Quality Risk Management. ICH, 2005.
84. European Medicines Agency. Reflection Paper on Pharmaceutical Development. EMA Guideline, 2021.
85. Smaniotto M, et al. Application of DoE in Optimizing Hot-Melt Extrusion. Pharmaceutics. 2020; 12(5): 435.
86. Smith DA, et al. Process Analytical Technologies in HME. Pharm Dev Technol. 2022; 27(5): 554–565.
87. Zhang X, et al. Real-Time Monitoring of HME Using NIR Spectroscopy. Eur J Pharm Sci. 2024; 181: 106–117.
88. FDA. Guidance for Industry: PAT — A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance. 2004.
89. FDA. Emerging Technology Program Annual Report. 2023.
90. EMA. Guideline on Continuous Manufacturing of Solid Dosage Forms. EMA, 2021.
91. Repka MA, et al. Pharmaceutical Applications of Hot-Melt Extrusion. Pharmaceutics. 2017; 9(4): 22.
92. FDA. Guidance for Industry: Orally Disintegrating Tablets. 2018.
93. Crowley MM, et al. Pharmaceutical Applications of Hot-Melt Extrusion (I). Drug Dev Ind Pharm. 2007; 33(9): 909–926.
94. Maniruzzaman M, et al. HME Process Technology to Pharmaceutical Products. Drug Dev Ind Pharm. 2012; 38(10): 1091–1121.
95. Iyer R, et al. Stability of Amorphous Solid Dispersions Produced by HME. Pharmaceutics. 2021; 13(10): 1682.
96. Li X, et al. Hot-Melt Extrusion Technology: Advantages and Challenges. Eur J Pharm Sci. 2024; 181: 106–117.
97. Kawashima Y, et al. Rapidly Disintegrating Tablets by Spray-Drying. Int J Pharm. 2002; 232: 111–119.
98. Ghourichay MP, et al. Evaluation of ODTs in Accordance with ODT Definition. J Turk Pharm Sci. 2023; 20(2): 148–160.
99. Alshetaili A, et al. Optimization of HME Processing Parameters. J Pharm Innov. 2020.
100. Simões MF, et al. Hot-Melt Extrusion in the Pharmaceutical Industry. Drug Discov Today. 2019; 24(9): 1749–1761.
101. Patil H, Tiwari RV, Repka MA. Hot-Melt Extrusion: From Theory to Application. AAPS PharmSciTech. 2016; 17(1): 133–147.
102. Wesholowski J, et al. Scale-Up and Process Optimisation of HME. Eur J Pharm Biopharm. 2019; 142: 396–404.
103. Narala S, et al. Pharmaceutical Cocrystals via HME. J Drug Deliv Sci Technol. 2021; 61: 102209.
104. Reuther M, et al. Orodispersible Films by HME and 3D Printing. Int J Pharm. 2025.
105. Brokmann F, et al. HME as Continuous Manufacturing for Mucoadhesive Films. Pharmaceutics. 2025; 17(1): 65.
106. Rahman N, et al. Natural Polymers in HME. Int J Biol Macromol. 2024; 260: 127–138.
107. Munir N, et al. AI-Based Predictive Modelling for HME. J Mater Sci Compos. 2024; 2: 5.




