Volume : 12, Issue : 11, November – 2025
Title:
ECO-FRIENDLY PREPARATION AND OPTIMIZATION OF MGO NANOPARTICLES USING RED SANDALWOOD BARK EXTRACT: A COMPREHENSIVE CHARACTERIZATION
Authors :
Kajal Vishwakarma, Jeetendra Kushwaha , Dev Sharan Chaturvedi
Abstract :
The green synthesis method utilized in this study has effectively demonstrated the environmentally friendly production of magnesium oxide (MgO) nanoparticles using red sandalwood bark extract as both a reducing and stabilizing agent. The phytochemicals present in the extract played a significant role in the formation of well-dispersed and stable nanoparticles, as confirmed by various characterization techniques. The UV-Visible absorption spectra showed a characteristic peak around 280 nm, confirming the successful formation of MgO nanoparticles. This absorption peak, coupled with the sharpness of the spectra, indicated that the nanoparticles were well-dispersed and had a narrow size distribution. The absence of significant absorption beyond 350 nm further validated the absence of larger aggregates or impurities, confirming the high quality of the synthesized nanoparticles. Characterization of the synthesized MgO nanoparticles through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) revealed predominantly spherical nanoparticles with a size range of 30–60 nm. The nanoparticles exhibited a minimal degree of agglomeration, which was controlled by the capping effect of the phytochemicals. The high resolution TEM images confirmed the crystalline nature of the nanoparticles through visible lattice fringes. Fourier-Transform Infrared (FTIR) spectroscopy further validated the involvement of phytochemicals in the synthesis process, with peaks indicating the presence of hydroxyl, amine, and Mg–O bonds. These findings confirmed the successful reduction of magnesium ions and stabilization of the nanoparticles by the plant extract.
Keywords- Magnesium Oxide, Red Sandalwood Bark, Magnesium nitrate hexahydrate, Nanoparticle, SEM, TEM .
Cite This Article:
Please cite this article in press Kajal Vishwakarma et al., Eco-Friendly Preparation And Optimization Of Mgo Nanoparticles Using Red Sandalwood Bark Extract: A Comprehensive Characterization, Indo Am. J. P. Sci, 2025; 12(11).
REFERENCES:
1. Rai, M., Yadav, A., & Gade, A. (2009). “Silver nanoparticles as a new generation of antimicrobials.” Biotechnology Advances, 27(1), 76-83.
2. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1-2), 83-96.
3. Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., & Mohan, N. (2010). “Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.” Colloids and Surfaces B: Biointerfaces, 76(1), 50-56.
4. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/c1gc15386b
5. Rajakumar, G., Gomathi, T., Thiruvengadam, M., et al. (2012). Plant extract mediated synthesis of ZnO nanoparticles. Current Nanoscience, 8(1), 137-140.
6. Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4), 240–248.
7. Kim, H. G., et al. (2013). Panax Ginseng as a Potential Antidepressant. Journal of Ethnopharmacology, 149(1), 38-43.
8. Hausenblas, H. A., et al. (2013). Saffron and Depression: A Meta-Analysis. Journal of Integrative Medicine, 11(6), 377-383.
9. Roy, N., Mondal, S., Laskar, R. A., & Basu, S. (2013). Green synthesis of silver nanoparticles by using Saccharum officinarum extract and assessment of their antimicrobial activity. Materials Letters, 64(18), 1951–1953.
10. Houghton, P. J. (1999). Valerian Root’s Anxiolytic Properties. Phytomedicine, 6(1), 41-48.
11. Ibrahim, H. M., & Abu-Salah, K. M. (2014). Green synthesis of silver nanoparticles using Aloe vera extract. Journal of Nanomaterials, 2014(5), 567878.
12. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., & Zolfaghari, B. (2014). “Green synthesis of metal nanoparticles using plants.” Green Chemistry, 16(6), 2963-2987.
13. Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2014). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864-870.
14. Rao, C. N. R., Muller, A., Cheetham, A. K. (2015). “The Chemistry of Nanomaterials: Synthesis, Properties and Applications.” Wiley-VCH.
15. Sathishkumar, M., Sneha, K., & Yun, Y. S. (2015). Green synthesis of gold nanoparticles using Cinnamomum zeylanicum. Journal of Pharmaceutical Sciences, 12(2), 451-458.
16. Ramesh, M., & Hilda, J. (2017). Copper nanoparticles synthesized using Ocimum sanctum extract. Journal of Environmental Nanotechnology, 6(1), 25-32.
17. Salem, A. M., & Fouad, D. M. (2020). Calcination effects on MgO nanoparticles prepared by sol-gel method. Materials Research Express, 7(4), 045002.
18. Rajeshkumar, S., & Naik, P. (2021). Dual synthesis of gold and silver nanoparticles using Camellia sinensis. Materials Science and Engineering: C, 129, 112-118.
19. Shankar, S.S., Rai, A., Ahmad, A., & Sastry, M. (2004). “Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.” Journal of Colloid and Interface Science, 275(2), 496-502.
20. Shree, K. S., Ashok, D., & Manjunath, H. (2019). Antitumor lignans from Pterocarpus santalinus. Journal of Pharmacognosy and Phytochemistry, 8(4), 2320-2323.
21. Singh, J., Dutta, T., & Kim, K. H. (2016). Green synthesis of ZnO nanoparticles using Azadirachta indica. Journal of Applied Chemistry, 13(6), 1013-1020.
22. Singh, J., Dutta, T., Kim, K. H., Rawat, M., & Samddar, P. (2018). “‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation.” Journal of Nanobiotechnology, 16, 84.
23. Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2018). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(3), 264 279.
24. Srivastava, A., Shukla, Y. N., & Kumar, S. (2013). Phytochemical profile and therapeutic applications of Pterocarpus santalinus. Indian Journal of Natural Products and Resources, 4(3), 351-359.
25. Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research, 4(1), 118–122.
26. Teixeira da Silva, J. A., & Yamamoto, Y. (2018). Biology, propagation, and conservation of Pterocarpus santalinus. Asian Journal of Plant Sciences, 17(4), 234 244.
27. Unno, K., et al. (2011). Green Tea’s Role in Mood and Cognition. Journal of Functional Foods, 3(1), 39-45.
28. Azwanida, N. N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal & Aromatic Plants, 4(3), 196. https://doi.org/10.4172/2167-0412.1000196
29. Balasubramanian, P., Radhakrishnan, R., & Lakshmi, T. (2020). Light-sensitive phytoconstituents and the role of amber storage containers. Journal of Pharmacognosy and Phytochemistry, 9(1), 1596–1599.
30. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/C1GC15386B




