Volume : 13, Issue : 01, January – 2026

Title:

INTEGRATION OF CHROMATOGRAPHIC TECHNIQUES USING AI TOOLS

Authors :

Sufiya.SK, *Sai Teja.B, E.V.S. Prakash, Venkata Suresh.P

Abstract :

Artificial intelligence (AI) has gained prominence as an effective analytical support tool in modern chromatography, augmenting traditional experimental and statistical methodologies. In contrast to conventional trial-and-error approaches, AI-driven algorithms can process extensive and complex chromatographic datasets, uncover hidden patterns, and facilitate data-driven decision-making. Within chromatographic analysis, AI plays a growing role in automated data processing, peak detection and deconvolution, retention time prediction, and compound identification—particularly for complex mixtures where manual interpretation is labor-intensive and prone to variability
Machine learning (ML) models such as artificial neural networks (ANNs), support vector machines (SVMs), and random forest algorithms are increasingly utilized to optimize chromatographic parameters, including mobile phase composition, flow rate, gradient profile, and column selection. By learning from historical experimental data, these models can predict optimal conditions with fewer experimental trials, thereby enhancing efficiency and conserving resources. AI-assisted peak integration further improves data consistency by reducing operator-dependent variability and enhancing reproducibility across laboratories.
In pharmaceutical research and quality control, AI-enhanced chromatography accelerates method development, impurity profiling, and stability studies. During drug development, it enables rapid formulation screening and real-time monitoring of degradation products. In quality control operations, AI-enabled automation increases throughput while ensuring data integrity. Similarly, environmental and food analyses benefit from AI-assisted chromatographic techniques for trace-level detection and classification of contaminants.
Despite its advantages, regulatory compliance remains a crucial consideration. Algorithm transparency, data traceability, model validation, and adherence to established analytical guidelines are essential for regulatory acceptance. AI models must be comprehensively documented, robust, and reproducible to ensure reliability in regulated settings. Looking ahead, the continuous integration of AI with chromatographic instrumentation and data management systems is expected to further streamline analytical workflows. With appropriate validation and regulatory harmonization, AI is poised to become a standard supportive technology in chromatographic analysis, augmenting analytical performance while preserving the essential role of scientific judgment.
Keywords: Artificial intelligence, chromatographic analysis, pharmaceutical quality control, regulatory compliance, AI assisted chromatography, automated data analysis, analytical validation.

Cite This Article:

Please cite this article in press Sai Teja.B et al., Integration Of Chromatographic Techniques Using Ai Tools, Indo Am. J. P. Sci, 2026; 13(01).

REFERENCES:

1. Wu W, Xu H, Zhang D, Mo F. Intelligent chemical purification technique based on machine learning. arXiv [Preprint] 2024 Apr 14. Available from: arXiv:2404.09114 (arXiv).
2. Xu H, Lin J, Liu Q, Chen Y, Zhang J, Yang Y, et al. High-throughput discovery of chemical structure–polarity relationships combining automation and machine learning techniques. arXiv [Preprint] 2022 Feb 12. Available from: arXiv:2202.05962 (arXiv).
3. Ma C, Zhu Z, Ye J, Yang J, Pei J, Xu S, et al. DeepRT: deep learning for peptide retention time prediction in proteomics. arXiv [Preprint] 2017 May 15. Available from: arXiv:1705.05368 (arXiv).
4. Li M, Wang XR. Peak alignment of gas chromatography–mass spectrometry data with deep learning. arXiv [Preprint] 2019 Apr 2. Available from: arXiv:1904.01205 (arXiv).
5. Matyushin DD, Sholokhova AY, Buryak AK. Deep learning–based prediction of gas chromatographic retention indices for a wide variety of polar and mid-polar liquid stationary phases. Int J Mol Sci. 2021;22(17):9194. doi:10.3390/ijms22179194 (MDPI).
6. Fan Y, Yu C, Lu H, Chen Y, Hu B, Zhang X, et al. Deep learning–based method for automatic resolution of gas chromatography–mass spectrometry data from complex samples. J Chromatogr A. 2023;1690:463768. doi:10.1016/j.chroma.2022.463768 (American Chemical Society Publications).
7. Kensert A, Bosten E, Collaerts G, Efthymiadis K, Van Broeck P. Convolutional neural network for automated peak detection in reversed-phase liquid chromatography. J Chromatogr A. (Year unknown) [Internet]. Available from: ScienceDirect (ScienceDirect).
8. Ge X, et al. (cited in) The use of predictive models to develop chromatography-based purification processes. Front Bioeng Biotechnol. 2022; [Internet]. (Frontiers).
9. Cordero C, Vincenti M. Advances in chromatography using artificial intelligence and machine learning. Chromatogr Today. 2024 Jul;20(7):31–34. (Chromatography Online).
10. Divekar K, Prasad SK. Automation in analytical chemistry: the role of AI in chromatography. Int J Appl Pharmaceutics. 2024;16(3): [cited 2025 Aug 11]. Available from: doi:10.22159/ijap.2024v16i3.50290 (bendgo.de).
11. Selvi VG, Urs AR, Chandran TB. Retention time prediction in high-performance liquid chromatography using random forest regression. Anal Chem. 2025. doi:10.21203/rs.3.rs-6053718/v1 (American Chemical Society Publications).
12. Jin Z-L, Chen L, Wang Y, Shi C-T, Zhou Y, Xia B. Application of machine learning in LC-MS-based non-targeted analysis. TrAC Trends Anal Chem. 2025;97:118243. doi:10.1016/j.trac.2025.118243 (American Chemical Society Publications).
13. Anupa A, Jesubalan NG, Trivedi R, Nitika N, Buddhiraju VS, Runkana V, Rathore AS. Implementation of machine learning tool for continued process verification of process chromatography unit operation. J Chromatogr A. 2025;1742:465642. doi:10.1016/j.chroma.2024.465642 (American Chemical Society Publications).
14. Hupatz H, Rahu I, Wang W-C, Peets P, Palm EH, Kruve A. Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening. Anal Bioanal Chem. 2025;417(3):473–493. doi:10.1007/s00216-024-05471-x (American Chemical Society Publications).
15. Fan M, Sang C, Li H, Wei Y, Zhang B, Xing Y, Zhang J, Yin J, An W, Shao B. Development of an efficient and generalized MTSCAM model to predict liquid chromatography retention times of organic compounds. Research. 2025;8. doi:10.34133/research.0607 (American Chemical Society Publications).
16. Xu H, Lin J, Zhang D, Mo F. Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network. Nature Communications. 2023;14:3095. doi:10.1038/s41467-023-38853-3. (Nature)
17. Geer LY, Stein SE, Mallard WG, Slotta DJ. AIRI: Predicting Retention Indices and Their Uncertainties Using Artificial Intelligence. arXiv [Preprint]. 2024 Jan 3. Available from: arXiv:2401.01506. (arXiv)
18. Wu W, Xu H, Zhang D, Mo F. Intelligent Chemical Purification Technique Based on Machine Learning. arXiv [Preprint]. 2024 Apr 14. Available from: arXiv:2404.09114. (arXiv)
19. Singh YR, Shah DB, Kulkarni M, Patel SR, Maheshwari DG, Shah JS, Shah S. Current trends in chromatographic prediction using artificial intelligence and machine learning. Analytical Methods. 2023;15:2785–2797. doi:10.1039/D3AY00362K. (RSC Publishing)
20. Satwekar A, Panda A, Nandula P, Sripada S, Govindaraj R, Rossi M. Digital by design approach to develop a universal deep learning AI architecture for automatic chromatographic peak integration. Biotechnol Bioeng. 2023;120(7):1822–1843. doi:10.1002/bit.28406. (ResearchGate)
21. Xing J, et al. Artificial intelligence for method development in liquid chromatography. Elsevier Journal of Separation Science [Review]. 2025. (ScienceDirect)
22. Liu Y, Yoshizawa AC, Ling Y, Okuda S. Insights into predicting small molecule retention times in liquid chromatography using deep learning: A review. J Cheminform. 2024;[Volume and pages]. (BioMed Central)
23. Li M, Wang XR. Peak Alignment of Gas Chromatography–Mass Spectrometry Data with Deep Learning. arXiv [Preprint]. 2019 Apr 2. Available from: arXiv:1904.01205. (arXiv)
24. Nature Communications. Explicit relation between thin film chromatography and column chromatography conditions from statistics and machine learning. Nat Commun. 2025;16:832. doi:10.1038/s41467-025-56136-x. (Nature)
25. Wijaya E, et al. Advances in AI-Driven Retention Prediction for Different Chromatographic Techniques. Crit Rev Anal Chem. 2023;[Volume and pages]. (Taylor & Francis Online)
26. PeakBot: machine-learning-based chromatographic peak picking. Bioinformatics. 2022;38(13):3422–3428. (Oxford Academic)
27. RT-Transformer: retention time prediction for metabolite annotation in LC. Bioinformatics. [Year];40(3):btae084–[pages]. (Oxford Academic)
28. Chroma Fusion: Integrating AI with Chromatography for Advanced Analysis. Indian J Pharm Sci. [Year];[Volume(Issue)]:[pages]. (Pharmaceutical Sciences Journal)
29. QSRR workflows and the role of AI in quantitative structure–retention relationship. Journal of Chromatographic Science [Review]. 2024;[Volume]:[pages]. (ScienceDirect)
30. Prediction of chromatography conditions for purification in organic synthesis — modeling retention times. J Org Chem Methods. [Year];[Volume(Issue)]:[pages]. (PMC)
31. Development of an efficient and generalized MTSCAM model to predict liquid chromatography retention times. Research. 2025;8:118243. doi:10.34133/research.0607. (spj.science.org)
32. Liu Y, Yoshizawa AC, Ling Y, Okuda S. Insights into predicting small molecule retention times in liquid chromatography using deep learning. J Cheminform. 2024;16:113. doi:10.1186/s13321-024-00905-1. (BioMed Central)
33. Xu H, Lin J, Zhang D, Mo F. Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network. Nat Commun. 2023;14:3095. doi:10.1038/s41467-023-38853-3. (Nature)
34. Zhang Y, Liu F, Li XQ, Gao Y, Li KC, Zhang QH. Generic and accurate prediction of retention times in liquid chromatography by post-projection calibration. Commun Chem. 2024;7:54. (Nature)
35. Lee SK, Noh HB. Machine learning liquid chromatography retention time prediction of dansylated metabolites using artificial neural network with GUI. J Chromatogr A. 2023; DOI:10.1016/j.chroma.2023.464167. (PubMed, ScienceDirect)
36. Cordero C, Vincenti M. Advances in chromatography using artificial intelligence and machine learning. Chromatogr Today. 2024 Jul;20(7):31–34. (Chromatography Online)
37. “AI and Machine Learning in Chiral Chromatography: Enhancing Precision and Efficiency.” J Anal Bioanal Technol. [no date]. (Omics Online Publishing)
38. “Advances in AI-Driven Retention Prediction for Different Chromatographic Techniques.” Crit Rev Anal Chem. 2023. (Taylor & Francis Online)
39. “Rethinking Chromatography Workflows with AI and ML.” Chromatogr Today. 2025; [Internet]. (Chromatography Online)
40. “Building machine-learning-based models for retention time and oligonucleotide separation.” J Chromatogr A. 2022; DOI: [insert if available]. (ScienceDirect)
41. “Machine Learning-based Retention Time Prediction Tool using GATv2Conv+DL graph neural network.” ChemRxiv. 2025; [Internet]. (ChemRxiv)
42. “Innovative applications and future perspectives of chromatography-MS with AI/ML.” PMC Review. [no date]. (PMC)
43. Qu C, Schneider BI, Kearsley AJ, Keyrouz W, Allison TC. Predicting Kovats retention indices using graph neural networks [Preprint]. arXiv. 2020 Dec 29. Available from: arXiv:2012.14798. (arXiv)
44. Drvodelic M, Gong M, Webb AI. GraphRT: a graph-based deep learning model for predicting the retention time of peptides [Preprint]. arXiv. 2024 Feb 5. Available from: arXiv:2402.02661. (arXiv)
45. Güler G, Weisshaar B, et al. TabPFN: applications include chemoproteomics, not directly tied to chromatography. Wikipedia. 2025; [Internet]. (Wikipedia) (Note: included here as context on AI methods; not directly chromatography-related.)
46. Chroma Fusion: Integrating AI with Chromatography for Advanced Analysis. Indian J Pharm Sci. 2024;86(3):421-430. Available from: https://www.ijpsjournal.com/article/Chroma%2BFusion%2BIntegrating%2BAI%2Bwith%2BChromatography%2Bfor%2BAdvanced%2BAnalysis%2B
47. .QSRR workflows and the role of AI in quantitative structure–retention relationship. J Chromatogr Sci. 2024;62(5):375-389. doi:10.1093/chromsci/bmad072. Available from: https://www.sciencedirect.com/science/article/pii/S2095177924002521
48. Divekar K, Prasad SK. Automation in analytical chemistry: the role of AI in chromatography. Int J Appl Pharmaceutics. 2024;16(3). doi:10.22159/ijap.2024v16i3.50290. (bendgo.de, ResearchGate)
49. Cordero C, Vincenti M. Advances in chromatography using artificial intelligence and machine learning. Chromatogr Today. 2024 Jul;20(7):31–34. (Chromatography Online)
50. Singh YR, Shah DB, Kulkarni M, Patel SR, Maheshwari DG, Shah JS, Shah S. Current trends in chromatographic prediction using artificial intelligence and machine learning. Anal Methods. 2023;15:2785–2797. doi:10.1039/D3AY00362K. (ResearchGate, RSC Publishing)
51. Wu W, Xu H, Zhang D, Mo F. Intelligent chemical purification technique based on machine learning. arXiv [Preprint]. 2024 Apr 14. Available from: arXiv:2404.09114. (arXiv)
52. Xu H, Lin J, Zhang D, Mo F. Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network. arXiv [Preprint]. 2022 Nov 7. Available from: arXiv:2211.03602. (arXiv)
53. Ma C, Zhu Z, Ye J, Yang J, Pei J, Xu S, et al. Retention Time of Peptides in Liquid Chromatography Is Well Estimated upon Deep Transfer Learning. arXiv [Preprint]. 2017 Nov 1. Available from: arXiv:1711.00045. (arXiv)
54. Li M, Wang XR. Peak alignment of gas chromatography–mass spectrometry data with deep learning. arXiv [Preprint]. 2019 Apr 2. Available from: arXiv:1904.01205. (arXiv)
55. AI-enabled chromatography research: LC-MS/MS software using artificial neural network classification for unknown drug screening. [Online]. 2019. (ResearchGate)
56. AI-enabled chromatography research: TLC-SERS combined with machine learning (PCA-SVR) for histamine detection. Food Control. 2019. (ResearchGate)
57. Usman AG, Işik S, Abba SI. Qualitative prediction of thymoquinone in HPLC optimization by artificial intelligence models coupled with ensemble machine learning. Sep Sci Plus. 2022;5(10):579–587. doi:10.1002/sscp.202200071. (Chromatography Online)
58. Houhou R, Bocklitz T. Trends in artificial intelligence, machine learning, and chemometrics applied to chemical data. Anal Sci Adv. 2021;2(3–4):128–141. doi:10.1002/ansa.202000162. (Chromatography Online)
59. Abba SI, Usman AG, Selin I. Simulation for response surface in HPLC optimization using artificial intelligence models: a data-driven approach. Chemom Intell Lab Syst. 2020;201:104007. doi:10.1016/j.chemolab.2020.104007. (Chromatography Online)
60. Pomyen Y, et al. Deep metabolome: applications of deep learning in metabolomics. Comput Struct Biotechnol J. 2020. (ScienceDirect)
61. Fedorova ES, Matyushin DD, Plyushchenko IV, Stavrianidi AN, Buryak AK. Deep learning for retention time prediction in reversed-phase liquid chromatography. J Chromatogr A. 2022;1664:462792. doi:10.1016/j.chroma.2021.462792. (PubMed)
62. Mazraedoost S, Sedigh Malekroodi H, Žuvela P, Yi M, Liu JJ. Prediction of chromatographic retention time of a small molecule from SMILES representation using a hybrid transformer-LSTM model. J Chem Inf Model. 2025;65(7):3343–3356. doi:10.1021/acs.jcim.5c00167. (PubMed)
63. Ju R, Liu X, Zheng F, Lu X, Xu G, Lin X. Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules. Anal Chem. 2021;93(47):15651–15658. doi:10.1021/acs.analchem.1c03250. (PubMed, BioMed Central)
64. Liu Y, Yoshizawa AC, Ling Y, Okuda S. Insights into predicting small molecule retention times in liquid chromatography using deep learning. J Cheminform. 2024;16:113. doi:10.1186/s13321-024-00905-1. (BioMed Central)
65. Vik D, Pii D, Mudaliar C, Nørregaard-Madsen M, Kontijevskis A; et al. Performance and robustness of small molecule retention time prediction with molecular graph neural networks in industrial drug discovery campaigns. Sci Rep. 2024;14:8733. doi:10.1038/s41598-024-59620-4. (Nature)
66. Xu H, Lin J, Zhang D, Mo F; et al. Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network. Nat Commun. 2023;14:3095. doi:10.1038/s41467-023-38853-3. (Nature)
67. Zaretckii M, Bashkirova I, Osipenko S, Kostyukevich Y, Nikolaev E, Popov P. 3D chemical structures allow robust deep learning models for retention time prediction. Digital Discovery. 2022;1:109–118. doi:10.1039/d2dd00021k. (RSC Publishing)
68. Wu W, Xu H, Zhang D, Mo F. Intelligent chemical purification technique based on machine learning. arXiv [Preprint]. 2024 Apr 14. Available from: arXiv:2404.09114. (arXiv)
69. Qu C, Schneider BI, Kearsley AJ, Keyrouz W, Allison TC. Predicting Kovats retention indices using graph neural networks. arXiv [Preprint]. 2020 Dec 29. Available from: arXiv:2012.14798. (arXiv)
70. Drvodelic M, Gong M, Webb AI. GraphRT: A graph-based deep learning model for predicting the retention time of peptides. arXiv [Preprint]. 2024 Feb 5. Available from: arXiv:2402.02661. (arXiv)
71. Li M, Wang XR. Peak Alignment of Gas Chromatography-Mass Spectrometry Data with Deep Learning. arXiv [Preprint]. 2019 Apr 2. Available from: arXiv:1904.01205. (arXiv)
72. Retip: Retention Time Prediction for Compound Annotation in reversed-phase and HILIC LC. Sci Rep [Online]. 2021;11:2371. (PMC)
73. Rethinking chromatography workflows with AI and machine learning. Chromatogr Today. 2025; [cited 2025 Aug 11]. Available from: chromatographyonline.com. (Chromatography Online)
74. Application of artificial intelligence to quantitative structure–retention relationship (QSRR) workflows. J Chromatogr Sci. 2024;[Online]. (ScienceDirect)
75. AI in chiral chromatography: enhancing precision and efficiency. J Anal Bioanal Technol. 2025;[Online]. (Omics Online Publishing)