Volume : 08, Issue : 04, April – 2021

Title:

47.SPECTRO-ANALYTICAL EVALUATION OF NEW HYDRAZONE SCHIFF BASE AND ITS DIVALENT COPPER (II) COMPLEX AND FLUORESCENCE STUDY

Authors :

Gajanan Dongare

Abstract :

The divalent metal complexes of [Cu(II)(L)(H2O)2] was obtained by the reaction of new hydrazone Schiff base ligand of heterocyclic 2-hydroxybenzylidene)-4-oxopiperidine-1-carbohydrazide (H2L). The metal (II) complex was analyzed and characterized by elemental analysis, some routine spectral techniques viz., FT-Infrared, UV-visible spectroscopy, and powder XRD. The stoichiometric ratio of hydrazone ligand and its Cu(II)metal was observed as 1:1 (M:L) in the complex. The spectral, TG data suggested a tetrahedral structure of Cu(II) complex.
KEYWORDS: Hydrazone Schiff base, divalent metal complex, spectral characterization, fluorescence emission, antifungal and anti-bacterial study.

Cite This Article:

Please cite this article in press Gajanan Dongare ., Spectro-Analytical Evaluation Of New Hydrazone Schiff Base And Its Divalent Copper (II) Complex And Fluorescence Study.., Indo Am. J. P. Sci, 2021; 08(04).

Number of Downloads : 10

References:

[1]. Siddappa, K.; Mane, S. B.; Manikprabhu, D. Spectral Characterization and 3D Molecular Modeling Studies of Metal Complexes Involving the O, N-Donor Environment of Quinazoline-4(3H)-One Schiff Base and Their Biological Studies. The Scientific World Journal 2014, 2014. https://doi.org/10.1155/2014/817365.
[2]. Hameed, A.; al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K. M. Schiff Bases in Medicinal Chemistry: A Patent Review (2010-2015). Expert Opinion on Therapeutic Patents 2017, 27 (1), 63–79. https://doi.org/10.1080/13543776.2017.1252752.
[3]. Bikas, R.; Ghorbanloo, M.; Sasani, R.; Pantenburg, I.; Meyer, G. Manganese(II) Complexes of Hydrazone Based NNO-Donor Ligands and Their Catalytic Activity in the Oxidation of Olefins. Journal of Coordination Chemistry 2017, 70 (5), 819–830. https://doi.org/10.1080/00958972.2017.1281918.
[4]. Chang, E. L.; Simmers, C.; Knight, D. A. Cobalt Complexes as Antiviral and Antibacterial Agents. Pharmaceuticals 2010, 3 (6), 1711–1728. https://doi.org/10.3390/ph3061711.
[5]. Nakanishi, T.; Sato, O. Crystal Structures of Two Nickel Compounds Comprising Neutral NiII Hydrazone Complexes and Dicarboxylic Acids. Acta Crystallographica Section E: Crystallographic Communications 2017, 73, 103–106. https://doi.org/10.1107/S2056989016020326.
[6]. Khattab, R. R.; Hassan, A. A.; Kutkat, O. M.; Abuzeid, K. M.; Hassan, N. A. Synthesis and Antiviral Activity of Novel Thieno[2,3-d]Pyrimidine Hydrazones and Their C-Nucleosides. Russian Journal of General Chemistry 2019, 89 (8), 1707–1717. https://doi.org/10.1134/S1070363219080267.
[7]. Rollas, S.; Küçükgüzel, Ş. G. Biological Activities of Hydrazone Derivatives. Molecules 2007, 12 (8), 1910–1939. https://doi.org/10.3390/12081910.
[8]. Parlak, A. E.; Cakmak, H.; Sandal, S.; Yılmaz, B.; Sekerci, M.; Karagöz Genc, Z.; Tuzcu, M.; Karatepe, M. Evaluation of Antioxidant and Antiproliferative Activities of 1,2-Bis (p-Amino-Phenoxy) Ethane Derivative Schiff Bases and Metal Complexes. Journal of Biochemical and Molecular Toxicology 2019, 33 (2), 1–11. https://doi.org/10.1002/jbt.22247.
[9]. Liu, Z.-Q.; Ng, Y. M.; Tiong, P. J.; Abu Talip, R. A.; Jasin, N.; Jong, V. Y. M.; Tay, M. G. Five-Coordinate Zinc(II) Complex: Synthesis, Characterization, Molecular Structure, and Antibacterial Activities of Bis-[ (E) -2-Hydroxy- N ′- { 1-(4-Methoxyphenyl)Ethylidene } Benzohydrazido]Dimethylsulfoxidezinc(II) Complex . International Journal of Inorganic Chemistry 2017, 2017 (Scheme 1), 1–8. https://doi.org/10.1155/2017/7520640.
[10]. Sinkar, S. N. Microwave Assisted Synthesis, Characterization and Biological Activity of Transition Metal Complexes of Schiff Base Ligand Derived from 2-Amino Benzimidazole with Isophthalaldehyde. International Journal for Research in Applied Science and Engineering Technology 2021, 9 (4), 635–640. https://doi.org/10.22214/ijraset.2021.33688.
[11]. Eldehna, W. M.; Abo-Ashour, M. F.; Al-Warhi, T.; Al-Rashood, S. T.; Alharbi, A.; Ayyad, R. R.; Al-Khayal, K.; Abdulla, M.; Abdel-Aziz, H. A.; Ahmad, R.; El-Haggar, R. Development of 2-Oindolin-3-Ylidene-Indole-3-Carbohydrazide Derivatives as Novel Apoptotic and Anti-Proliferative Agents towards Colorectal Cancer Cells. Journal of Enzyme Inhibition and Medicinal Chemistry 2021, 36 (1), 319–328. https://doi.org/10.1080/14756366.2020.1862100.
[12]. Kilic-Kurt, Z.; Acar, C.; Ergul, M.; Bakar-Ates, F.; Altuntas, T. G. Novel Indole Hydrazide Derivatives: Synthesis and Their Antiproliferative Activities through Inducing Apoptosis and DNA Damage. Archiv der Pharmazie 2020, 353 (8). https://doi.org/10.1002/ardp.202000059.
[13]. Yu, H.; Guo, S.; Cheng, J. Y.; Jiang, G.; Li, Z.; Zhai, W.; Li, A.; Jiang, Y.; You, Z. Synthesis and Crystal Structures of Cobalt(III), Copper(II), Nickel(II) and Zinc(II) Complexes Derived from 4-Methoxy-N′-(Pyridin-2-Ylmethylene)Benzohydrazide with Urease Inhibitory Activity. Journal of Coordination Chemistry 2018, 71 (24), 4164–4179. https://doi.org/10.1080/00958972.2018.1533959.
[14]. Ribeiro, N.; Galvão, A. M.; Gomes, C. S. B.; Ramos, H.; Pinheiro, R.; Saraiva, L.; Ntungwe, E.; Isca, V.; Rijo, P.; Cavaco, I.; Ramilo-Gomes, F.; Guedes, R. C.; Pessoa, J. C.; Correia, I. Naphthoylhydrazones: Coordination to Metal Ions and Biological Screening†. New Journal of Chemistry 2019, 43 (45), 17801–17818. https://doi.org/10.1039/c9nj01816f.
[15]. Alias, M.; Kassum, H.; Shakir, C. Synthesis, Physical Characterization and Biological Evaluation of Schiff Base M(II) Complexes. Journal of the Association of Arab Universities for Basic and Applied Sciences 2014, 15 (1), 28–34. https://doi.org/10.1016/j.jaubas.2013.03.001.
[16]. Geeta H. Chimmalagi Umashri Kendur, Sunil M. Patil,Kalagouda B. Gudasi, Mononuclear Co(III), Ni(II) and Cu(II) complexes of tridentate di‐tert‐butylphenylhydrazone: Synthesis,characterization, X‐ray crystal structures, Hirshfeld surface analysis, molecular docking and in vivo anti‐inflammatory activity, Appl Organometal Chem. 2018;e4337. https://doi.org/10.1002/aoc.4337.
[17]. Knittl, E. T.; Abou-Hussein, A. A.; Linert, W. Syntheses, Characterization, and Biological Activity of Novel Mono- and Binuclear Transition Metal Complexes with a Hydrazone Schiff Base Derived from a Coumarin Derivative and Oxalyldihydrazine. Monatshefte fur Chemie 2018, 149 (2), 431–443. https://doi.org/10.1007/s00706-017-2075-9.
[18]. Sridhar, G.; Mohammed Bilal, I.; Easwaramoorthy, D.; Kutti Rani, S.; Siva Kumar, B.; Manohar, C. S. Synthesis, Characterization and Antimicrobial Activities of Copper, Nickel, Cobalt, Chromium Complexes Derived from (Z)-4-Fluoro-N-(2,7-Dimethylhept-6-Enylidene) Benzenamine. Journal of the Brazilian Chemical Society 2017, 28 (5), 756–767. https://doi.org/10.21577/0103-5053.20160224.
[19]. Ayodhya, D.; Veerabhadram, G. Synthesis and Characterization of N, O-Donor Schiff Base Capped ZnS NPs as a Sensor for Fluorescence Selective Detection of Fe 3+, Cr 2+ and Cd 2+ Ions. Modern Electronic Materials 2018, 4 (4), 151–162. https://doi.org/10.3897/j.moem.4.4.35062.
[20]. Ain, N. ul; Ansari, T. M.; Shah Gilani, M. R. H.; Xu, G.; Liang, G.; Luque, R.; Alsaiari, M.; Jalalah, M. Facile and Straightforward Synthesis of Hydrazone Derivatives. Journal of Nanomaterials 2022, 2022, 1–6. https://doi.org/10.1155/2022/3945810.
[21]. Dwivedi, R.; Singh, S.; Chauhan, B. S.; Srikrishna, S.; Panday, A. K.; Choudhury, L. H.; Singh, V. P. Aroyl Hydrazone with Large Stokes Shift as a Fluorescent Probe for Detection of Cu2+ in Pure Aqueous Medium and in Vivo Studies. Journal of Photochemistry and Photobiology A: Chemistry 2020, 395 (June 2019), 112501. https://doi.org/10.1016/j.jphotochem.2020.112501.
[22]. Wu, W. N.; Wu, H.; Wang, Y.; Mao, X. J.; Liu, B. Z.; Zhao, X. L.; Xu, Z. Q.; Fan, Y. C.; Xu, Z. H. A Simple Hydrazone as a Multianalyte (Cu2+, Al3+, Zn2+) Sensor at Different PH Values and the Resultant Al3+ Complex as a Sensor for F-. RSC Advances 2018, 8 (10), 5640–5646. https://doi.org/10.1039/c7ra10219d.
[23]. Matada, M. N.; Jathi, K. Pyrazole-Based Azo-Metal(II) Complexes as Potential Bioactive Agents: Synthesis, Characterization, Antimicrobial, Anti-Tuberculosis, and DNA Interaction Studies. Journal of Coordination Chemistry 2019, 72 (12), 1994–2014. https://doi.org/10.1080/00958972.2019.1630613.
[24]. Mir, J. M.; Vishwakarma, P. K.; Maurya, R. C. Conjoint Experimental–Theoretical Evaluation of Pyrone-Salicylic Acid Hydrazide Copper(II) Schiff Base Complexes: Their Synthesis, SOD and Electrochemical Fronts. Journal of the Chinese Advanced Materials Society 2018, 6 (1), 55–80. https://doi.org/10.1080/22243682.2017.1407669.
[25]. Ayoub, M. A.; Abd-Elnasser, E. H.; Ahmed, M. A.-A.; Rizk, M. G. Synthesis, Physicochemical, Thermal, Fluorescence and Catalytic Activity Studies of Novel Mn(II), Co(II), Ni(II) and Cu(II) Complexes with Tridentate (ONS) Schiff Base Ligand. European Journal of Chemistry 2017, 8 (1), 85–95. https://doi.org/10.5155/eurjchem.8.1.85-95.1513.
[26]. Ebrahimi, H. P.; Hadi, J. S.; Abdulnabi, Z. A.; Bolandnazar, Z. Spectroscopic, Thermal Analysis and DFT Computational Studies of Salen-Type Schiff Base Complexes. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy 2014, 117, 485–492. https://doi.org/10.1016/j.saa.2013.08.044.
[27]. Mahmoud, W. H.; Deghadi, R. G.; Mohamed, G. G. Novel Schiff Base Ligand and Its Metal Complexes with Some Transition Elements. Synthesis, Spectroscopic, Thermal Analysis, Antimicrobial and in Vitro Anticancer Activity. Applied Organometallic Chemistry 2016, 30 (4), 221–230. https://doi.org/10.1002/aoc.3420.
[28]. Mohamed, G. G.; Omar, M. M.; Ibrahim, A. A. Biological Activity Studies on Metal Complexes of Novel Tridentate Schiff Base Ligand. Spectroscopic and Thermal Characterization. European Journal of Medicinal Chemistry 2009, 44 (12), 4801–4812. https://doi.org/10.1016/j.ejmech.2009.07.028.