Volume : 08, Issue : 12, December – 2021

Title:

47.NANOPARTICULATE FORMULATION IN OPHTHALMIC DRUG DELIVERY SYSTEM

Authors :

Suchita G*, Dr. Vikas Jain

Abstract :

The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. So, the present work on ocular drug delivery research make advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of nano formulations have also been introduced for anterior segment ocular drug delivery. these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their process and develop novel and safe drug delivery strategies followed by current nanotechnology-based formulation developments and also, recent developments with other ocular drug delivery strategies employing in situ formulation.
Keywords: Nanopartcles, Clecoxib, Mucoadhesive polymers

Cite This Article:

Please cite this article in press Suchita G et al, Nanoparticulate Formulation In Ophthalmic Drug Delivery System., Indo Am. J. P. Sci, 2021; 08(12).

Number of Downloads : 10

References:

1. Sasaki H, Yamamura K, Nishida K, Nakamurat J, Ichikawa M. Delivery of drugs to the eye by topical application. Progress in Retinal and Eye Research, 15 (2), 1996, p. 553-620.
2. Mitra AK. Ophthalmic drug delivery systems; second edition revised and expanded. Chapter 1, Overview of Ocular Drug Delivery, p. 1-3.
3. Mundada AS, Avari JG, Mehta SP, Pandit SS, Patil AT. Recent advances in ophthalmic drug delivery system. Pharm Rev., 6(1) 2008, p. 481-489.
4. Shah NJ, Shah HJ , Groshev A , Hirani AA , Pathak VY, Sutariya BV, Nanoparticulate transscleral ocular drug delivery, J Biomol Res Ther 2014, 3:3, p. 1-14.
5. Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci. 2004; 45, p. 2342–2347.
6. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res. 1998; 17, p. 33–58.
7. Meqi SA, Deshpande SG. Ocular drug delivery: Controlled and novel drug delivery. New delhi:CBS Publishers; 2002, p. 82-84.
8. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res. 1998 Jan;17(1), p.33-58.
9. Saettone, M.F., B. Giannaccini, and D. Monti, Ophthalmic emulsions and suspensions. Journal of Toxicology: Cutaneous and Ocular Toxicology, 2001. 20(2-3): p. 183-201.
10. Patel A., Cholkar K, Agrahari V., Ocular drug delivery systems: an overview. World journal of pharmacology, 2013. 2(2): p. 47.
11. Vulovic N, Primorac M, Stupar M, Brown MW, Ford JL. Some studies on the preservation of indometacin suspensions intended for ophthalmic use. Pharmazie. 1990 Sep;45(9), p.678-9.
12. Meseguer G, Buri P, Plazonnet B, Rozier A, Gurny R. Gamma scintigraphic comparison of eyedrops containing pilocarpine in healthy volunteers. J Ocul Pharmacol Ther. 1996 Winter;12(4), p.481-8.
13. Gebhardt, BM., ED. Varnell, and H.E. Kaufman, Cyclosporine in collagen particles: corneal penetration and suppression of allograft rejection. Journal of ocular pharmacology and therapeutics, 1995. 11(4): p. 509-517.
14. Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, Ichikawa M. Pharmacokinetic prediction of the ocular absorption of an instilled drug with ophthalmic viscous vehicle. Biol Pharm Bull. 2000 Nov;23(11), p.1352-6.
15. Mitra, AK., Treatise on Ocular Drug Delivery. Vol. 1. 2013: Bentham Science Publishers.
16. Remington, JP., DB. Troy, and P. Beringer, Remington: The science and practice of pharmacy. Vol. 1. 2006: Lippincott Williams & Wilkins.
17. Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, Ichikawa M. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16(1), p.85-146.
18. Shell, JW., Pharmacokinetics of topically applied ophthalmic drugs. Survey of ophthalmology, 1982. 26(4): p. 207-218.
19. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013;2(2), p.47-64
20. Gray C., Systemic toxicity with topical ophthalmic medications in children. Pediatric and Perinatal Drug Therapy, 2006. 7(1), p. 23-29.
21. Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005 Dec 8; 306(1-2), p. 71-82.
22. Mahmoud, S.S., Gehman, J.D., Azzopardi, K., Robins-Browne, R.M. and Separovic, F. (2008), Liposomal phospholipid preparations of chloramphenicol for ophthalmic applications. J. Pharm. Sci., 97, p. 2691-2701.
23. Pal Kaur, I. and M. Kanwar, Ocular preparations: the formulation approach. Drug development and industrial pharmacy, 2002. 28(5): p. 473-493.
24. Sahoo, S.K., Dilnawaz F, Krishnakumar S, Nanotechnology in ocular drug delivery. Drug discovery today, 2008. 13(3): p. 144-151.
25. Date AA, Shibata A, Goede M, Sanford B, La Bruzzo K, Belshan M, Destache CJ. Development and evaluation of a thermosensitive vaginal gel containing raltegravir + efavirenz loaded nanoparticles for HIV prophylaxis. Antiviral Res. 2012 Dec;96(3), p. 430-436.
26. Bhatta, R., Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, Shukla PK Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. International journal of pharmaceutics, 2012. 432(1): p. 105-112.
27. Vadlapudi AD, Mitra AK. Nanomicelles: an emerging platform for drug delivery to the eye. Ther Deliv. 2013;4(1), p. 1-3.
28. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004 Jul; 56(7), p. 827-40.
29. Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Polymeric nanostructured materials for biomedical applications, Prog. Polym. Sci. 2016, 60, p.86–128.
30. Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, Van Blitterswijk C, Cationic polymers and their therapeutic potential, Chem. Soc. Rev., 2012, 41 (21) p.7147–7194.
31. Sun W, Chen X, Xie C, Wang Y, Lin L, Zhu K, Co-delivery of doxorubicin and anti-BCL-2 siRNA by pH-responsive polymeric vector to overcome drug resistance in in vitro and in vivo hepg2 hepatoma model, Biomacromolecules, 2018, 19 (6), p. 2248–2256
32. Mokhtarzadeh A, Alibakhshi A, Hejazi M, Omidi Y, Dolatabadi JEN, Bacterial derived biopolymers: advanced natural nanomaterials for drug delivery and tissue engineering, TrAC Trends Anal. Chem. 82 (2016), p. 367–384.
33. Ren D, Protein nanoparticle as a versatile drug delivery system in nanotechnology, J. Nanomed. Res. 4 (1) (2016) 00077.
34. Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, Van Blitterswijk C, Cationic polymers and their therapeutic potential, Chem. Soc. Rev. 41 (21) (2012) 7147–7194.
35. Ren D, Protein nanoparticle as a versatile drug delivery system in nanotechnology, J. Nanomed. Res. 4 (1) (2016), p. 1-4.
36. Yadav P, Bandyopadhyay A, Chakraborty A, Sarkar K, Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis, Carbohydr. Polym. 182 (2018), p.188–198.
37. Razi MA, Wakabayashi R, Tahara Y, Goto M, Kamiya N, Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin, Colloids Surf. B: Biointerfaces 164 (2018), p. 308–315.
38. Mellet CO, Ferna´ndez JMG, Benito JM, Cyclodextrin-based gene delivery systems, Chem. Soc. Rev. 40 (3) (2011), p. 1586–1608.
39. Salleh SN, Fairus AAH, Zahary MN, Raj NB, Jalil AMM, Unravelling the effects of soluble dietary fibre supplementation on energy intake and perceived satiety in healthy adults: evidence from systematic review and meta-analysis of randomised-controlled trials. Foods 2019, 8, 15.
40. Pawar, SN, Edgar KJ, Alginate derivatization: a review of chemistry, properties and applications, Biomaterials 2012, 33, pp. 3279–3305.
41. Ismail, I.; Fauzi, N.H.M.; Baki, M.Z.; Hoon, H.L. Effects of Different Drying Methods and Hydrocolloids on Quality Properties of Semi-Dried Catfish Jerky. Malays. J. Appl. Sci. 2016, 2, 11–18.
42. Lee KY, Mooney DJ, Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, p. 106–126.
43. Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics. 2018 Aug 21; 10(3), p.134.
44. Paques JP, Sagis LMC, van Rijn CJM, van der Linden E, Nanospheres of Alginate Prepared through w/o Emulsification and Internal Gelation with Nanoparticles of CaCO3. Food Hydrocoll. 2014, 40, p. 182–188.
45. Chan LW, Lee HY, Heng PWS, Mechanisms of External and Internal Gelation and Their Impact on the Functions of Alginate as a Coat and Delivery System. Carbohydr. Polym. 2006, 63, p. 176–187.
46. Ismail I, Fauzi NHM, Baki MZ, Hoon HL, Effects of different drying methods and hydrocolloids on quality properties of semi-dried catfish jerky. J. Appl. Sci. 2016, 2, p.11–18.
47. Lee KY, Mooney DJ, Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, p. 106–126.
48. Leong JY, Lam WH, Ho KW, Voo WP, Lee MFX, Lim HP, Lim SL, Tey BT, Poncelet D, Chan ES, Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 2016, 24, p. 44–60.
49. Pestovsky YS, Martínez-Antonio A. The synthesis of alginate microparticles and nanoparticles. Drug Des. Intellect. Prop. Int. J. 2019, 3, p. 293–327.
50. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E, Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int. J. Pharm. 1999, 188, 155–164.
51. Olvera-Martínez BI, Cázares-Delgadillo J, Calderilla-Fajardo SB, Villalobos-García R, Ganem-Quintanar A, Quintanar-Guerrero D. Preparation of polymeric nanocapsules containing octyl methoxycinnamate by the emulsification-diffusion technique: penetration across the stratum corneum. J Pharm Sci. 2005 Jul;94(7), p. 1552-9
52. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, p. 887–913.
53. Muhaimin, Bodmeier R. Effect of solvent type on preparation of ethyl cellulose microparticles by solvent evaporation method with double emulsion system using focused beam reflectance measurement. Polym. Int. 2017, 66, p. 1448–1455.
54. Lemoine D, Préat V, Polymeric Nanoparticles as delivery system for influenza virus glycoproteins. J. Control. Release 1998, 54, p. 15–27.
55. Seyam S, Nordin NA, Alfatama M, Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals 2020, 13, p. 307.
56. Sepúlveda-Rivas S, Fritz HF, Valenzuela C, Santiviago CA, Morales JO. Development of novel ee/alginate polyelectrolyte complex nanoparticles for lysozyme delivery: physicochemical properties and in vitro safety. Pharmaceutics. 2019 Mar 1; 11(3), p.103.
57. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993 Sep; 82(9), p. 912-7.
58. Saether HV, Holme HK, Maurstad G, Smidsrod O, Stokke BT. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr. Polym. 2008, 74, p. 813–821.
59. Poozesh S, Bilgili E. Scale-up of pharmaceutical spray drying using scale-up rules: A review. Int J Pharm. 2019 May 1; 562, p. 271-292.
60. Arpagaus C, Collenberg A, Rütti D, Assadpour E, Jafari SM. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm. 2018 Jul 30;546(1-2), p. 194-214.
61. Ziaee A, Albadarin AB, Padrela L, Femmer T, O’Reilly E, Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019 Jan 15;127, p.300-318.
62. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004 Jun 18; 278(1), p. 1-23.
63. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, p. 1217–1256.
64. Sivabalan A, Subramani RH, Meenarathi B, Palanikumar S, Anbarasan R. Synthesis and Characterization of poly (e caprolactone): A comparative study. Int. J. Sci. Res. Eng. Technol. 2014, 1, p. 9–14.
65. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ: Novel hydrophilic chitosan-polyethylene oxide nanoprticles as protein carriers. J. Appl. Polymer Sci. 1997, 63: p. 125-132
66. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998 Sep;15(9): p. 1326-31
67. Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001; 47, p. 83–97.
68. Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release. 2012 Feb 28;158(1): p.15-33
69. Varan C, Bilensoy E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein J Nanotechnol. 2017 Jul 12;8: p.1446-1456.
70. M. Savioli Lopes,a. L. Jardini, R. Maciel Filho, Poly (lactic acid) production for tissue engineering applications, Procedia Eng. 42 (2012), p. 1402–1413.