Volume : 08, Issue : 06, June – 2021

Title:

10.AN OVERVIEW ON IN-SITU GELLING SYSTEM

Authors :

Allamsetti Geethanjali, Praveen Sivadasu* and Padmalatha K

Abstract :

In recent times in-situ gel systems have emerged as an alternative approach to conventional drug delivery systems. These systems release the drug in a controlled manner by its special feature of ‘Sol to Gel’ transition. Further, this in-situ gelling system will stay as a solution before administering into the body and convert into a gel post administering into the body due to various physiological conditions. The drawbacks associated with conventional systems of both solutions and gels, such as accurate dosing, ease of administration overcome by using in situ gelling systems. The current review is mainly focused on giving a special emphasis on types, advantages, disadvantages, polymers used in the formulation, preparation of an in-situ gel, approaches, evaluations, and biomedical applications.
Keywords: In-situ gel; Polymers; Controlled Release; Drug delivery; Gelling Mechanism

Cite This Article:

Please cite this article in press Sivadasu Praveen et al., An Overview On In-Situ Gelling System., Indo Am. J. P. Sci, 2021; 08(06).

Number of Downloads : 10

References:

[1] Rogovina LZ, Vasilev VG, Braudo EE. Definition of the concept of the polymer gel. Polym Sci Series C. 2008; 50:85-92.
[2] Whitlock DR, Weiss L, Ambrogio LN, Inventors, AOBIOME LLC, Assignee. Ammonia oxidizing microorganisms for use and delivery to the gastrointestinal system. United States patent application US 16/318,583; 2019.
[3] Carlfors J, Edsman K, Petersson R, Jornving K. Rheological evaluation of gelrite in situ gels for ophthalmic use. Eur J Pharm Sci. 1998; 6:113-9.
[4] Ullah F, Othman MB, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C. 2015; 57:414-33.
[5] Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci. 2005; 30:38-70.
[6] Kuo CK, Ma PX. Ionically cross-linked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001; 22:511-21.
[7] Peak CW, Wilker JJ, Schmidt G. A review on tough and sticky hydrogels. Colloid Polym Sci. 2013; 291:2031-47.
[8] Fuchs S, Shariati K, Ma M. Specialty tough hydrogels and their biomedical applications. Adv Healthcare Mater. 2020; 9:1901-396.
[9] Nisha Patel, Gajanan Shinde and Rajesh KS. Ophthalmic In situ gel. Genesis. 2014; 2(4): 29-33.
[10] Suisha F., Kawasaki N., Miyazaki S., Shirakawa M., Yamatoya K., Sasaki M., Attwood D. Xyloglucan gels as sustained release vehicles for the intraperitoneal administration of mitomycin C. Int. J. Pharm. 1998; 172: 27– 32.
[11] Miyazaki S, Endo K, Kawasaki N, Kubo W, Watanabe H, Attwood D. Oral sustained delivery of paracetamol from in situ gelling xyloglucan formulations. Drug Dev Ind. Pharm. 2003; 29(2): 113-9.
[12] Nerkar Tushar, Gujarathi Nayan A, Rane Bhushan R, Bakliwal Sunil R, Pawar S.P. In situ gel: Novel Approch in sustained and controlled drug delivery system. Int. J. Pharm. Sci. 2013; 4(4): 1-18.
[13] Saraswat R, Bhan CS, Gaur A. A review on polymers used in in-situ gel drug delivery systems. Int J Pharm Innov. 2011; 1(2):110-8.
[14] Langmaier F, Mokrejs P, Kolomaznik K, Mládek M. Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Management. 2008; 28(3):549-56.
[15] Ma WD, Xu H, Wang C, Nie SF, Pan WS. Pluronic F127-g-poly (acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int. J. Pharm. 2008; 350(1-2):247-56.
[16] Vodithala S, Khatry S, Shastri N, Sadanandam M. Formulation and evaluation of ion activated ocular gels of ketorolac tromethamine. Int J Curr Pharm Res. 2010; 2(3):33-8.
[17] Jothi M, Harikumar SL and Geeta Aggarwal. In-situ ophthalmic gels for the treatment of eye diseases. Int. J. Pharm. Sci. Res. 2012; 3: 1891-904.
[18] Rajas NJ, Kavitha K, Gounder T, Mani T. In-Situ ophthalmic gels a developing trend. Int J Pharm Sci Rev and Res. 2011; 7: 8-14.
[19] Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian J Pharm Sci 2009; 71:242-51.
[20] Parekh HB, Jivani R, Jivani NP, Patel LD, Makwana A, Sameja K. Novel in situ polymeric drug delivery system: a review. J Drug Delivery Ther 2012; 2:136-45.
[21] Mishra A, Malhotra AV. Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem 2009; 19:8528-36.
[22] Shastri DH, Patel LD. Novel alternative to ocular drug delivery system: Hydrogel. Ind J Pharma Res. 2010; 2: 1-13.
[23] Vashisth P, Singh H, Pruthi PA, Pruthi V. Gellan as novel pharmaceutical excipient. Handbook of Polymers for Pharmaceutical Technologies: Structure and Chemistry. 2015;1:1-21.
[24] Sechoy O, Tissie G, Sebastian C, Maurin F, Driot JY, Trinquand C. A new long acting ophthalmic formulation of carteolol containing Alginic acid. Int J Pharm. 2000; 207: 109-16.
[25] Davies N.M., Farr S.J., Hadgraft J., Kellaway L.W. Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm. Res. 1991; 8(8): 1039–43.
[26] Gilbert JC, Washington C, Davies MC, Hadgraft J. The behaviour of Pluronic F127 in aqueous solution studied using fluorescent probes. Int J. Pharm. 1987; 40(1-2):93-9.
[27] Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000; 21(21):2155-61.
[28] Calonge M. The treatment of dry eye. Surv Ophthalmol. 2001; 45:S227-39.
[29] Mundada AS, Avari JG. In situ gelling polymers in ocular drug delivery systems: a review. Crit Rev Ther Drug Carrier Syst. 2009; 26:85-118.
[30] Gil ES, Hudson SM. Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci. 2004; 29:1173-222.
[31] Jagur Grodzinski J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol. 2010; 21:27-47.
[32] Cole MA, Voelcker NH, Thissen H, Griesser HJ. Stimuliresponsive interfaces and systems for the control of protein– surface and cell-surface interactions. Biomaterials. 2009; 30:1827-50.
[33] Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discover Today. 2013; 18:337-49.
[34] Ju XJ, Xie R, Yang L, Chu LY. Biodegradable ‘intelligent’ materials in response to physical stimuli for biomedical applications. Expert Opin Ther Pat. 2009; 19:493-507.
[35] Qazvini NT, Bolisetty S, Adamcik J, Mezzenga R. Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization. Biol Macromol. 2012; 13:2136-47.
[36] Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical cross-linking of biopolymeric scaffolds: current knowledge and future directions of cross-linked engineered bone scaffolds. Int J Biol Macromol. 2018; 107:678-88.
[37] Vibha B. In-situ gel nasal drug delivery system-a review. Inter J Pharma Sci. 2014; 4:577-80.
[38] Radivojsa M, Grabnar I, Grabnar PA. Thermo-reversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: design and in vitro evaluation. Eur J Pharm Sci. 2013; 50:93-101.
[39] Prasad RR, Kumar JR, Vasudha BA, Chettupalli AK. Formulation development and evaluation of allopurinol solid dispersions by solvent evaporation technique. Int J Appl Pharm. 2018; 10:168-71.
[40] Saini R, Saini S, Singh G, Banerjee A, Railmajra DS. In situ gelsnew trends in ophthalmic drug delivery systems. Int J Pharm Sci Res. 2015; 6:386-90.
[41] Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Inter J Pharm. 2011; 411:128-35.
[42] Kashyap N, Viswanad B, Sharma G, Bhardwaj V, Ramarao P, Kumar MR. Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin. Biomaterials. 2007; 28:2051-60.
[43] Mandal S, Thimmasetty MK, Prabhushankar GL, Geetha MS. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Invest. 2012; 2:78.
[44] Rao MA. Measurement of flow and viscoelastic properties. In: Rheology of Fluid, Semisolid, and Solid Foods, Springer, Boston, MA; 2014. p. 63-159.
[45] Sapavatu SN, Jadi RK. Formulation development and characterization of gastroretentive drug delivery systems of loratadine. Int J Appl Pharm. 2019; 11:91-9.
[46] Moondra S, Raval N, Kuche K, Maheshwari R, Tekade M, Tekade RK. Sterilization of pharmaceuticals: technology, equipment, and validation. In Dosage Form Design Parameters, Academic Press; 2018. p. 467-519.
[47] Kadam S, Kondawar M, Kamble K. Formulation and evaluation of in situ gelling system of ketrolac tromethamine for ophthalmic drug delivery. Int J Pharm Thera. 2010; 1:64-71.
[48] Leng KM, Vijayarathna S, Jothy SL, Sasidharan S, Kanwar JR. In vitro and in vivo anticandidal activities of alginate-enclosed chitosan–calcium phosphate-loaded Fe-bovine lactoferrin nanocapsules. Future Sci OA. 2017; 4: FSO257.
[49] Rodriguez Hernandez J. Antimicrobial/Antifouling surfaces obtained by surface modification. In: Polymers against Microorganisms, Springer, Cham; 2017. p. 95-123.
[50] Harish NM, Prabhu P, Charluyu RN, Subramanyam EVS. Formulation and evaluation of in-situ gel containing Clotrimazole for oral candidiasis. J Pharm Sci. 2012; 4: 1885-9.
[51] Paul S, Mondol R, Ranjit S, Maiti S. Antiglaucomatic niosomal system: recent trend in ocular drug delivery research. Int J Pharm Pharm Sci. 2010; 2:8-15.
[52] Swamy NG, Abbas Z. Mucoadhesive in situ gels as nasal drug delivery systems: an overview. Asian J Pharm Sci. 2012; 7:168-80.
[53] Choi HG, Oh YK, Kim CK. In-situ gelling and mucoadhesive liquid suppository containing Acetaminophen: Enhanced bioavailability. Int J Pharm. 1998; 165: 23-32.
[54] Sinem YK, Seda R, Zeynep AS, Esra B. A new in-situ gel formulation of Itraconazole for vaginal administration. J Pharm Pharmacol. 2012; 3: 417-26.
[55] Kathe K, Kathpalia H. Film-forming systems for topical and transdermal drug delivery. Asian J Pharm Sci. 2017; 12:487-97.
[56] Kranz H, Yilmaz E, Brazeau GA, Bodmeier R. In vitro and in vivo drug release from a novel in situ forming drug delivery system. Pharm Res. 2008; 25(6):1347-54.