Volume : 08, Issue : 10, October – 2021

Title:

03.COBALT OXIDE NANOPARTICLES: SYNTHESIS AND CHARACTERIZATION

Authors :

Veronica Deekala , Rathna Babu Guntur , Jyothsna Pragathi Yazala, Anitha Kowthalam , Ramesh Raju Rudra Raju

Abstract :

The cobalt oxide Nanoparticles were synthesized from Cobalt Nitrate Hexahydrate aqueous solution under the chemical method at 60-90°C. The average crystallite size was calculated from De-Bye Scherrer’s equation. FESEM, EDX, XRD were used to characterize the structural features of the product. FTIR spectra confirmed the adsorption of the cobalt oxide nanoparticles. In addition, UV-visible absorption spectra were employed to estimate the band gap energy of the copper oxide nanoparticles. This method may be suitable for large scale production of cobalt oxide nanoparticles for practical applications. The effect of cobalt oxide nanoparticles is screened in vitro for antimicrobial activity by Disc diffusion method. The bacterial organisms used in this study are E.coli, Bascillus Subtilis. The observed inhibition zones for these nanoparticles are in the range of 22mm for E.coli and 20mm for Bascillus Subtilis. The cytotoxicity activities of copper oxide nanoparticles screened by MTT-assay. We have screened for one type of cancer cell-line i.e MCF-7( Breast Cancer), cobalt oxide nanoparticles obtained IC50 values in the range of 54ug/ml for MCF-7 cell line.
Keywords: Cobalt Oxide Nanoparticles, SEM, EDX, XRD,FTIR,UV-Vis, Disc diffusion method, Cytotoxicity.

Cite This Article:

Please cite this article in press Veronica Deekala et al, Cobalt Oxide Nanoparticles: Synthesis And Characterization.., Indo Am. J. P. Sci, 2021; 08(10).

Number of Downloads : 10

References:

1. Moon, J., Kim, T.K., Saders, B., Choi, C., Liu, Z., Jin, S and Chen R, Sol. Energ. Mat., Sol. 2015,134, 417–424.
2. Zheng, Y., Li, P., Li, H and Chen, S., Int. J. Electrochem. Sci. 2014, 9,7369 – 7381.
3. Sun,H., Ahmad, M and Zhu, J. Electrochim Acta 2013,89, 199 – 205.
4. Madhu, R., Veeramani, V., Chen, S., Manikandan, A., Lo, Y and Chueh, L., ACS Appl. Mater. Interfaces, 2015, 29,15812-20.
5. Cao, Y., Yuan, F., Yao, M., Bang, J.H and Lee, H., J. Cryst. Eng., Comm, 2014,16, 826– 833.
6. Xu, J., M, Zhang, J., Wang, B and Liu F. J. Alloys Compd. 2015,619, 361– 367.
7. Sahoo, P., Djieutedjeu, H and Poudeu, Pierre. J. Mater. Chem. 2013,1, 15022- 15030.
8. Niasari, M.S., Mir, N and Davar, F. J. Phys. Chem. Solids, 2009,70,847–852.
9. Makhlouf, S.A., Bakr, Z.H., Aly, K., Moustafa, M.S., Superlattices and Microstructures. 2013, 64, 107– 117.
10. Nandapure, B., Kondawar, S., Nandapure, A, Int. J. Sci. Res. 2015,4(1), 440- 441.
11. Rathod, P., Nemade, K and Waghuley, S. Int. J. Chem. Phys. Sci. 2015 4, 491- 95.
12. FarhadiSaeed., Sepahdar Asma and Jahanara Kosar. J. nanostruct. 2013, 199- 207.
13. Al-Tuwirqi, R., Al-Ghamdia., A., Aal., Umar, A and Mahmoud, W.E., Superlattices and Microstruct. 2011, 49, 416–421.