Volume : 08, Issue : 09, September – 2021

Title:

37.SYNTHESIS AND CHARACTERIZATION OF N-METHYL INDOLE DERIVATIVES VIA DESULFITATIVE DISPLACEMENT BY VARIOUS ANILINE DERIVATIVES

Authors :

NAGALATHA, SRIDHER VANGA

Abstract :

The present work indicates a facile and efficient synthesis of some new 3- ((Substitutedphenyl)amino)-2-(1-methyl-1H-indole-3-carbonyl)-3-(methylthio) acrylonitrile derivatives bearing indole moiety via desulfitative displacement by various amines. The synthetic route is well designed in such a way that reaction required minimum time for completion with catalyst-free reaction, and easy workup and purification process. The range of yield is moderate to good with maximum purity. All the synthesized compounds were characterized by various spectroscopic technique. All the synthesized compounds were tested for in-vitro antimicrobial biological evaluation in which the antibacterial activity of some compounds showed promising activity in comparison to standard drug streptomycin and ciprofloxacin, while the antifungal activity of all compounds showed higher to moderate activity against standard drug Nystatin. This study would be beneficial for further bio-evaluation.
Keywords: desulfitative, in-vitro antimicrobial activity, Nystatin.

Cite This Article:

Please cite this article in press Nagalatha et al, Synthesis And Characterization Of N-Methyl Indole Derivatives Via Desulfitative Displacement By Various Aniline Derivatives., Indo Am. J. P. Sci, 2021; 08(9).

Number of Downloads : 10

References:

1. L. Pan, X. Bi, Q. Liu, Chem. Soc. Rev. 2013, 42, 1251–1286.
2. R. K. Dieter, Tetrahedron 1986, 42, 3029–3096.
3. Y. Tominaga, Y. Matsuda, J. Heterocycl. Chem. 1985, 22, 937–949.
4. G. Deshmukh, S. Kalyankar, Y. Mahavidyalaya, Int. J. Reserach Pharm. Chem.2015, 5, 295–298.
5. P. Chaudhary, A. Gupta, P. Devi, D. Kishore, J. Chem. Sci. 2013, 125, 1487– 1491.
6. R. Gompper, H. Schaefer, Chem. Ber. 1967, 100, 591–604.
7. C. Kelber, Ber. Dtsch. Chem. Ges 1910, 43, 1252–1259.
8. D. Villemin, A. Ben Alloum, Synthesis (Stuttg). 1991, 1991, 301–303.
9. A. M. Soliman, A. A. Sultan, A. K. El-Shafei, Monatshefte für Chemie/Chemical Mon. 1995, 126, 615–619.
10. G. Singh, J. Chem. Soc. Perkin… Trans I 1985, 1289.
11. B. K. Mehta, H. Ila, H. Junjappa, Tetrahedron Lett. 1995, 36, 1925–1928.
12. M. Saquet, A. Thuillier, Bull Soc Chim Fr 1966, 3969–3973.
13. C. S. Rao, R. T. Chakrasali, H. Ila, H. Junjappa, Tetrahedron 1990, 46, 2195– 2204.
14. B. Myrboh, L. W. Singh, H. Ila, H. Junjappa, Synthesis (Stuttg). 1982, 1982, 307–309.
15. art ne , .-V. Vázquez, J. L. Carreón-Macedo, L. E. Sansores, R. Salcedo, Tetrahedron 2003, 59, 6415–6422.
16. G. W. Gokel, in Int. Congr. Ser., Elsevier, 2007, pp. 1–14.
17. W.-M. Yau, W. C. Wimley, K. Gawrisch, S. H. White, Biochemistry 1998, 37, 14713–14718.
18. G. Bratulescu, Tetrahedron Lett. 2008, 49, 984–986.
19. N. Sakai, K. Annaka, T. Konakahara, Tetrahedron Lett. 2006, 47, 631–634.
20. B. J. Stokes, B. Jovanovic, H. Dong, K. J. Richert, R. D. Riell, T. G. Driver, J. Org. Chem. 2009, 74, 3225–3228.
21. Y. Du, R. Liu, G. Linn, K. Zhao, Org. Lett. 2006, 8, 5919–5922.
22. A. Carpita, A. Ribecai, P. Stabile, Tetrahedron 2010, 66, 7169–7178.
23. H. Mao, J.-P. Wan, Y. Pan, C. Sun, Tetrahedron Lett. 2010, 51, 1844–1846.
24. D. K. Whelligan, D. W. Thomson, D. Taylor, S. Hoelder, J. Org. Chem. 2009, 75, 11–15.
25. Y. Yamane, X. Liu, A. Hamasaki, T. Ishida, M. Haruta, T. Yokoyama, M. Tokunaga, Org. Lett. 2009, 11, 5162–5165.
26. L. Zhu, M. Vimolratana, S. P. Brown, J. C. Medina, Tetrahedron Lett. 2008, 49, 1768–1770.
27. S. Wagaw, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 10251– 10263.
28. G. A. Kraus, H. Guo, Org. Lett. 2008, 10, 3061–3063.
29. A. Arcadi, G. Bianchi, F. Marinelli, Synthesis (Stuttg). 2004, 2004, 610–618.
30. K. Hiroya, S. Itoh, T. Sakamoto, J. Org. Chem. 2004, 69, 1126–1136.
31. G. Bartoli, G. Palmieri, M. Bosco, R. Dalpozzo, Tetrahedron Lett. 1989, 30, 2129–2132.
32. Y. Jia, J. Zhu, J. Org. Chem. 2006, 71, 7826–7834.
33. Y.-Q. Fang, M. Lautens, Org. Lett. 2005, 7, 3549–3552.
34. V. Sridharan, S. Perumal, C. Avendaño, J. C. Menéndez, Synlett 2006, 91–95. [35] L. Zhou, M. P. Doyle, J. Org. Chem. 2009, 74, 9222–9224.
35. M. S. Karthikeyan, D. J. Prasad, B. Poojary, K. S. Bhat, B. S. Holla, N. S. Kumari, Bioorg. Med. Chem. 2006, 14, 7482–7489.
36. M. F. Akhlaghi, S. Amidi, M. Esfahanizadeh, M. Daeihamed, F. Kobarfard, Iran. J. Pharm. Res. IJPR 2014, 13, 35.
37. S. M. Gomha, H. A. Abdel-Aziz, Bull. Korean Chem. Soc. 2012, 33, 2985– 2990.
38. Z. Liu, L. Tang, H. Zhu, T. Xu, C. Qiu, S. Zheng, Y. Gu, J. Feng, Y. Zhang, G. Liang, J. Med. Chem. 2016, 59, 4637–4650.
39. M. A. A. Radwan, E. A. Ragab, N. M. Sabry, S. M. El-shenawy, 2007, 15, 3832–3841.
40. R. K. Tiwari, D. Singh, J. Singh, V. Yadav, A. K. Pathak, R. Dabur, A. K. Chhillar, R. Singh, G. L. Sharma, R. Chandra, Bioorg. Med. Chem. Lett. 2006, 16, 413–416.
41. N. . Pr heval’Skii, I. V agedov, V. N. Dro d, Chem. Heterocycl. Compd.1997, 33, 1475–1476.
42. A. Kamal, Y. V. V. Srikanth, M. N. A. Khan, T. B. Shaik, M. Ashraf,Bioorganic Med. Chem. Lett. 2010, 20, 5229–5231.
43. Y. Wu, M. S. Coumar, J. Chang, H. Sun, F. Kuo, 2009, 4941–4945.
44. N. Arumugam, R. Raghunathan, A. I. Almansour, U. Karama, Bioorganic Med. Chem. Lett. 2012, 22, 1375–1379.
45. C. K. Ryu, J. Y. Lee, S. H. Jeong, J. H. Nho, Bioorganic Med. Chem. Lett. 2009,19, 146–148.
46. S. Urgaonkar, J. F. Cortese, R. H. Barker, M. Cromwell, A. E. Serrano, D. F. Wirth, J. Clardy, R. Mazitschek, Org. Lett. 2010, 12, 3998–4001.
47. J. M. F. Edward J. Glamkowski, Warren N.J, -Lower a-K), 1984.