Volume : 09, Issue : 12, December – 2022

Title:

97.EFFECTIVENESS OF FLUORIDE ON CHILDREN ACIDIC PLAQUE

Authors :

Ibrahim Salem Thaffed, Hamed Manea Abdullah Alshamrani, Abdullah Shalan Saeed Alqarni, Ahmed Mohammed Alghamdi, Majed Nawar Maudh Alharthi, Faris Ahmed Saad Alkhathami, Ali Mohammad Alzahrani, Tareq Saleh Alzahrani, Moadh Abdulhameed Alghamdi

 

Abstract :

Dietary sugars, dental biofilm, and the host interact simultaneously within the framework of the oral environment to cause the multifactorial illness dental caries. Comprehensive literature search utilizing the electronic databases PubMed and Embase for relevant English-language publications published up until the middle of 2022. Fluoride treatments applied directly to dental plaque lowered acid production. In addition, the dissolution of fluoride from enamel treated topically decreased the acid production of oral bacteria in vitro. The benefits are transient and may not be relevant to caries prevention in vivo. Therefore, daily fluoride applications can reduce the acidogenicity of tooth plaque even 8 to 12 hours after treatment. This decrease will likely aid to caries prevention

Cite This Article:

Please cite this article in press Ibrahim Salem Thaffed et al, Effectiveness Of Fluoride On Children Acidic Plaque., Indo Am. J. P. Sci, 2022; 09(12).

Number of Downloads : 10

References:

1. J. Xiao, N. Alkhers, D.T. Kopycka-Kedzierawski, R.J. Billings, T.T. Wu, D. A. Castillo, L. Rasubala, H. Malmstrom, Y. Ren, E. Eliav, Prenatal oral health care and early childhood caries prevention: a systematic review and meta-analysis, Caries Res. 53 (4) (2019) 411–421.
2. C.H. Chu, E.C. Lo, Promoting caries arrest in children with silver diamine fluoride: a review, Oral Health Prev. Dent. 6 (4) (2008) 315–321.
3. P.S. Casamassimo, S. Thikkurissy, B.L. Edelstein, E. Maiorini, Beyond the dmft: the human and economic cost of early childhood caries, J. Am. Dent. Assoc. 140 (6) (2009) 650–657.
4. D. Duangthip, K.J. Chen, S.S. Gao, E.C.M. Lo, C.H. Chu, Managing early childhood caries with atraumatic restorative treatment and topical silver and fluoride agents, Int. J. Environ. Res. Public Health 14 (10) (2017).
5. M.H.T. Fung, D. Duangthip, M.C.M. Wong, E.C.M. Lo, C.H. Chu, Arresting dentine caries with different concentration and periodicity of silver diamine fluoride, JDR Clin. Trans. Res. 1 (2) (2016) 143–152.
6. S.S. Gao, I.S. Zhao, N. Hiraishi, D. Duangthip, M.L. Mei, E.C.M. Lo, C.H. Chu, Clinical trials of silver diamine fluoride in arresting caries among children: a systematic review, JDR Clin. Trans. Res. 1 (3) (2016) 201–210.
7. M.L. Mei, L. Ito, Y. Cao, E.C. Lo, Q.L. Li, C.H. Chu, An ex vivo study of arrested primary teeth caries with silver diamine fluoride therapy, J. Dent. 42 (4) (2014) 395–402.
8. Fejerskov O, Thylstrup A, Larsen MJ: Rational use of fluorides in caries prevention: a concept based on possible cariostatic mechanisms. Acta Odontol Scand 1981;39:241– 249.
9. ten Cate JM, Duijsters PP: Influence of fluoride in solution on tooth demineralization. I. Chemical data. Caries Res 1983;17:193– 199.
10. Khan A, Moola MH, Cleaton- Jones P: Global trends in dental fluorosis from 1980 to 2000: a systematic review. SADJ 2005;60:418– 421.
11. Whelton HP, Ketley CE, McSweeney F, O’Mullane DM: A review of fluorosis in the European Union: prevalence, risk factors and aesthetic issues. Community Dent Oral Epidemiol 2004;32(suppl 1):9– 18.
12. C.H. Chu, L. Mei, C.J. Seneviratne, E.C. Lo, Effects of silver diamine fluoride on dentine carious lesions induced by Streptococcus mutans and Actinomyces naeslundii biofilms, Int. J. Paediatr. Dent. 22 (1) (2012) 2–10.
13. M.L. Mei, C.H. Chu, K.H. Low, C.M. Che, E.C. Lo, Caries arresting effect of silver diamine fluoride on dentine carious lesion with S. mutans and L. acidophilus dualspecies cariogenic biofilm, Med. Oral Patol. Oral Cir. Bucal 18 (6) (2013) e824–31.
14. M.L. Mei, Q.L. Li, C.H. Chu, E.C. Lo, L.P. Samaranayake, Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries, Ann. Clin. Microbiol. Antimicrob. 12 (2013) 4.
15. R.J. Palmer Jr., Composition and development of oral bacterial communities, Periodontology 2000 64 (1) (2014) 20–39.
16. CDC: Achievements in public health. 1900– 1999: fluoridation of drinking water to prevent dental caries. Morb Mort Wkly Rep 1999;48:933– 940.
17. Jones S, Burt BA, Petersen PE, Lennon MA: The effective use of fluoride in public health. Bull WHO 2005;83:670– 676.
18. Dean HT, Arnold FA, Elvolve E: Additional studies of the relation of fluoride domestic waters to dental caries experience in 4,425 white children aged 12– 14 years in 13 cities in 4 states. Public Health Rep 1942;57:1155– 1179.
19. McDonagh MS, Whiting PF, Wilson PM, Sutton AJ, Chestnutt I, Cooper J, Misso K, Bradley M, Treasure E, Kleijnen J: Systematic review of water fluoridation. BMJ 2000;321:855– 859.
20. Burt BA, Keels MA, Heller KE: The effects of a break in water fluoridation on the development of dental caries and fluorosis. J Dent Res 2000;79:761– 769.
21. Buzalaf MA, de Almeida BS, Olympio KP, da SCVE, de CSPSH: Enamel fluorosis prevalence after a 7- year interruption in water fluoridation in Jaú, Sao Paulo, Brazil. J Public Health Dent 2004;64:205– 208.
22. de Almeida BS, da Silva Cardoso VE, Buzalaf MA: Fluoride ingestion from toothpaste and diet in 1- to 3- year- old Brazilian children. Community Dent Oral Epidemiol 2007;35:53– 63.
23. Rodrigues MH, Leite AL, Arana A, Villena RS, Forte FD, Sampaio FC, Buzalaf MA: Dietary fluoride intake by children receiving different sources of systemic fluoride. J Dent Res 2009;88:142– 145.
24. Buzalaf MAR, Rodrigues MHC, Pessan JP, Leite AL, Arana A, Villena RS, Forte FD, Sampaio FC: Biomarkers of fluoride in children exposed to different sources of systemic fluoride. J Dent Res 2011;90:215– 219.
25. P. Milgrom, J.A. Horst, S. Ludwig, M. Rothen, B.W. Chaffee, S. Lyalina, K. S. Pollard, J.L. DeRisi, L. Mancl, Topical silver diamine fluoride for dental caries arrest in preschool children: a randomized controlled trial and microbiological analysis of caries associated microbes and resistance gene expression, J. Dent. 68 (2018) 72–78.
26. H. Mitwalli, M.D.A. Mourao, J. Dennison, P. Yaman, B.J. Paster, M. Fontana, Effect of silver diamine fluoride treatment on microbial profiles of plaque biofilms from root/cervical caries lesions, Caries Res. 53 (5) (2019) 555–566.
27. M.R. Becker, B.J. Paster, E.J. Leys, M.L. Moeschberger, S.G. Kenyon, J.L. Galvin, S. K. Boches, F.E. Dewhirst, A.L. Griffen, Molecular analysis of bacterial species associated with childhood caries, J. Clin. Microbiol. 40 (3) (2002) 1001–1009.
28. P.W. Caufield, C.N. Schon, P. Saraithong, Y. Li, S. Argimon, Oral Lactobacilli and Dental Caries: A Model for Niche Adaptation in Humans, J. Dent. Res. 94 (Suppl. 9) (2015) 110S–118S.
29. E. Kanasi, F.E. Dewhirst, N.I. Chalmers, R. Kent Jr., A. Moore, C.V. Hughes, N. Pradhan, C.Y. Loo, A.C. Tanner, Clonal analysis of the microbiota of severe early childhood caries, Caries Res. 44 (5) (2010) 485–497.
30. W.D. Noorda, D.J. Purdell-Lewis, A.M. van Montfort, A.H. Weerkamp, Monobacterial and mixed bacterial plaques of Streptococcus mutans and Veillonella alcalescens in an artificial mouth: development, metabolism, and effect on human dental enamel, Caries Res. 22 (6) (1988) 342–347.
31. J.D. Featherstone, B.E. Rodgers, Effect of acetic, lactic and other organic acids on the formation of artificial carious lesions, Caries Res. 15 (5) (1981) 377–385.
32. L.S. Silva Mendez, R.P. Allaker, J.M. Hardie, N. Benjamin, Antimicrobial effect of acidified nitrite on cariogenic bacteria, Oral Microbiol. Immunol. 14 (6) (1999) 391–392.