Volume : 09, Issue : 02, February – 2022

Title:

31.AN OVERVIEW OF FACTORS INCREASING THE RESISTANCE TO ANTI-CANCER DRUG

Authors :

Mohammed Alwan AL-Baradi, Abdulrahman YaanAllah Alfaeq, Naif Abdullah Alrahaili , Ahmad Abdullah Alshamrani , Abdullah Mohammed Alshehri , Ahmed Ali Alghamdi, Fawaz Salih Alzahrani, Mohmmed Fahad Allhyani, Maram Hamad Almohammadi , Salem Meawad Almutteri

Abstract :

One of the major causes of chemotherapy failure in cancer is drug resistance to conventional therapy. Tumor heterogeneity, some cellular level changes, hereditary variables, and other unique mechanisms have all been identified as underlying causes for drug resistance development in tumors in recent years. We searched the literature from the year 2000 until the end of 2021 for all relevant articles that discussed the elements that increase anti-cancer drug resistance. Drug delivery systems containing a targeting moiety improve site-specificity, receptor-mediated endocytosis, and drug concentration inside cells, reducing drug resistance and improving therapeutic efficacy. These therapeutic techniques function by regulating the various drug resistance pathways.

Cite This Article:

Please cite this article in press Mohammed Alwan AL-Baradi et al, An Overview Of Factors Increasing The Resistance To Anti-Cancer Drug., Indo Am. J. P. Sci, 2022; 09(2).

Number of Downloads : 10

References:

1. National Center for Health Statistics. Health, United States, 2015: with special feature on racial and ethnic health disparities. Hyattsville, MD: 2016.
2. American Cancer Society. Cancer Facts & Figures 2017. Atlanta: American Cancer Society; 2017.
3. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6:1769–92.
4. Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016:1395:1–18.
5. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.
6. Borst P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2012;2:120066.
7. Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15:71.
8. Damin DC, Lazzaron AR. Evolving treatment strategies for colorectal cancer: a critical review of current therapeutic options. World J Gastroenterol. 2014;20:877.
9. Lumachi F, Luisetto G, Basso SMM, Basso U, Brunello A, et al. Endocrine therapy of breast cancer. Curr Med Chem. 2011;18:513–22.
10. Uramoto H, Tanaka F. Recurrence after surgery in patients with NSCLC. Transl lung cancer Res. 2014;3:242–9.
11. Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012;13:9545–71.
12. Global Burden of Disease Cancer Collaboration. Fitzmaurice C., Allen C., Barber R.M., Barregard L., Bhutta Z.A., Brenner H., Dicker D.J., Chimed-Orchir O., Dandona R., et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548.
13. Kikuchi H., Yuan B., Hu X., Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am. J. Cancer Res. 2019;9:1517–1535.
14. Lichota A., Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci. 2018;19:11.
15. Marchi E., O’Connor O.A. Safety and efficacy of pralatrexate in the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Ther. Adv. Hematol. 2012;3:227–235.
16. Nussbaumer S., Bonnabry P., Veuthey J.L., Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta. 2011;85:2265–2289.
17. Luqmani Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005;14:35–48.
18. Onizuka K., Hazemi M.E., Sato N., Tsuji G., Ishikawa S., Ozawa M., Tanno K., Yamada K., Nagatsugi F. Reactive OFF-ON type alkylating agents for higher-ordered structures of nucleic acids. Nucleic Acids Res. 2019;47:6578–6589.
19. Wu C.P., Hsiao S.H., Huang Y.H., Hung L.C., Yu Y.J., Chang Y.T., Hung T.H., Wu Y.S. Sitravatinib Sensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs. Cancers. 2020;12:195.
20. 19. Zu Y., Yang Z., Tang S., Han Y., Ma J. Effects of P-glycoprotein and its inhibitors on apoptosis in K562 cells. Molecules. 2014;19:13061–13075.
21. Karvar S. The role of ABC transporters in anticancer drug transport. Turk. J. Biol. 2014;38:800–805. doi: 10.3906/biy-1407-3.
22. Le T., Bhushan V., Sochat M., Chavda Y. First Aid for the USMLE Step 1. 1st ed. McGraw-Hill Education; New York, NY, USA: 2017. pp. 416–419.
23. Peng X., Li L., Ren Y., Xue H., Liu H., Wen S., Chen J. Synthesis of N-Carbonyl Acridanes as Highly Potent Inhibitors of Tubulin Polymerization via One-Pot Copper-Catalyzed Dual Arylation of Nitriles with Cyclic Diphenyl Iodoniums. Adv. Synth. Catal. 2020:1–7.
24. Lagas J.S., Fan L., Wagenaar E., Vlaming M.L., van Tellingen O., Beijnen J.H., Schinkel A.H. P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin. Cancer Res. 2010;16:130–140. doi: 10.1158/1078-0432.CCR-09-1321.
25. Galski H., Oved-Gelber T., Simanovsky M., Lazarovici P., Gottesman M.M., Nagler A. P-glycoprotein-dependent resistance of cancer cells toward the extrinsic TRAIL apoptosis signaling pathway. Biochem Pharmacol. 2013;86:584–596.
26. Nanayakkara A.K., Follit C.A., Chen G., Williams N.S., Vogel P.D., Wise J.G. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018;8:967. doi: 10.1038/s41598-018-19325-x.
27. Duesberg P., Stindl R., Hehlmann R. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome re-assortments that are catalyzed by aneuploidy. Proc. Natl. Acad. Sci. USA. 2000;97:14295–14300.
28. Duesberg P., Stindl R., Hehlmann R. Origin of multidrug resistance in cells with and without multidrug resistance genes: Chromosome re-assortments catalyzed by aneuploidy. Proc. Natl. Acad. Sci. USA. 2001;98:11283–11288.
29. Mantovani F., Collavin L., Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212.
30. Mansoori B., Mohammadi A., Davudian S., Shirjang S., Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017;7:339–348.
31. Zhang P., Zheng P., Liu Y. Amplification of the CD24 Gene Is an Independent Predictor for Poor Prognosis of Breast Cancer. Front. Genet. 2019;10:560.
32. Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343(6166):72–6.
33. Gatenby RA, Gillies RJ, Brown JS. The evolutionary dynamics of cancer prevention. Nat Rev Cancer. 2010;10(8):526–7.