Volume : 09, Issue : 07, July – 2022

Title:

42.DROSOPHILA MELANOGASTER – VERSATILE MODEL FOR THE STUDY OF HUMAN DISEASES

Authors :

Rutuja S. Abhonkar *, Sagar R. Bagul

Abstract :

The fruit fly Drosophila Melanogaster is a popular model system in genetics labs that combines genetics and developmental biology. Drosophila genetics is tractable, but its embryonic development was too complex and intractable to study until molecular biology tools made gene manipulation and RNA extraction from these species possible. D. Melanogaster is quickly becoming one of the most powerful tools for studying the function of human disease genes, such as those involved in developmental and neurological disorders, cancer, cardiovascular disease, metabolic and storage diseases and genes involved in the visual, auditory and immune systems. Flies have various experimental benefits, including a fast life cycle and ability to create huge numbers of individuals, making them suitable for sophisticated genetic screening and in future aiding in the investigation of complicated disorders. This review considers the broad concept through which D. Melanogaster can be utilised to compare human disease, as well as its advantages and life cycle.
Keywords: Drosophila Melanogaster, life cycle, Human disease model, Good model organism, Endocrinology of drosophila

Cite This Article:

Please cite this article in press Rutuja S. Abhonkar et al, Drosophila Melanogaster – Versatile Model For The Study Of Human Diseases., Indo Am. J. P. Sci, 2022; 09(7). ,

Number of Downloads : 10

References:

1. Sepel LM, Loreto EL. Um seculo de Drosophila na genetica. Genética na Escola. 2010;5(2):42-7.
2. Sturtevant AH. Thomas Hunt Morgan. National Academy of Sciences Biographical Memoirs. 1959;33:282-325.
3. Pawson T, Bernstein A. Receptor tyrosine kinases: genetic evidence for their role in Drosophila and mouse development. Trends in Genetics. 1990 Jan 1;6:350-6. https://doi.org/10.1016/0168-9525(90)90276-c
4. Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological reviews. 2011 Jun 1;63(2):411-36. https://doi.org/10.1124/pr.110.003293
5. Jennings BH. Drosophila–a versatile model in biology & medicine. Materials today. 2011 May 1;14(5):190-5. https://doi.org/10.1016/S1369-7021(11)70113-4
6. Rand MD. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicology and teratology. 2010 Jan 1;32(1):74-83. https://doi.org/10.1016/j.ntt.2009.06.004
7. Ong C, Yung LY, Cai Y, Bay BH, Baeg GH. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology. 2015 Apr 3;9(3):396-403.
8. Va DP, Sa AA, Paul SF. Wonder animal model for genetic studies-Drosophila melanogaster–its life cycle and breeding methods–a review. Sri Ramachandra Journal of Medicine. 2009 Jun;2(2):33-8.
9. Kumar, S., 2020. Study on history fitness and life cycle of drosophila (Drosophila melanogaster).
10. Stephenson R, Metcalfe NH. Drosophila melanogaster: a fly through its history and current use. The journal of the Royal College of Physicians of Edinburgh. 2013 Jan 1;43(1):70-5. https://doi.org/10.4997/jrcpe.2013.116
11. Marsh JL, Thompson LM. Drosophila in the study of neurodegenerative disease. Neuron. 2006 Oct 5;52(1):169-78. https://doi.org/10.1016/j.neuron.2006.09.025
12. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996 Jul;382(6588):225-30. https://doi.org/10.1038/382225a0
13. Devi AL, Nongthomba U, Bobji MS. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy. Journal of the mechanical behavior of biomedical materials. 2016 Jan 1;53:161-73. https://doi.org/10.1016/j.jmbbm.2015.08.015
14. Chawengsaksophak K, James R, Hammond VE, Köntgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997 Mar;386(6620):84-7. https://doi.org/10.1038/386084a0
15. Brunner E, Peter O, Schweizer L, Basler K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature. 1997 Feb;385(6619):829-33. https://doi.org/10.1038/385829a0
16. Haymer DS, Hartl DL. The experimental assessment of fitness in Drosophila. I. Comparative measures of competitive reproductive success. Genetics. 1982 Nov 1;102(3):455-66. https://doi.org/10.1093/genetics/102.3.455
17. Kohler RE. Lords of the fly: Drosophila genetics and the experimental life. University of Chicago Press; 1994 May 2.
18. Baylies MK, Bate M. twist: a myogenic switch in Drosophila. Science. 1996 Jun 7;272(5267):1481-4. https://doi.org/10.1126/science.272.5267.1481
19. Riddiford LM. Hormones and Drosophila development. The development of Drosophila melanogaster. 1993;2:899-939.
20. King-Jones K, Thummel CS. Nuclear receptors—a perspective from Drosophila. Nature Reviews Genetics. 2005 Apr;6(4):311-23.
21. Abolaji AO, Kamdem JP, Farombi EO, Rocha JB. Drosophila melanogaster as a promising model organism in toxicological studies. Arch Bas App Med. 2013;1:33-8.
22. Lee WR, Beranek DT, Byrne BJ. Dosage-response relationships for methyl methanesulfonate in Drosophila melanogaster spermatozoa: DNA methylation per nucleotide vs. sex-linked recessive lethal frequency. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1989 Apr 1;211(2):243-57. https://doi.org/10.1016/0027-5107(89)90007-9
23. Lee SH. Oxidative stress-mediated chemical modifications to biomacromolecules: mechanism and implication of modifications to human skin keratins and angiotensin II. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan. 2013 Jan 1;133(10):1055-63. https://doi.org/10.1248/yakushi.13-00176
24. Golombieski RM, Graichen DA, Pivetta LA, Nogueira CW, Loreto EL, Rocha JB. Diphenyl diselenide [(PhSe) 2] inhibits Drosophila melanogaster δ-aminolevulinate dehydratase (δ-ALA-D) gene transcription and enzyme activity. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2008 Mar 1;147(2):198-204. https://doi.org/10.1016/j.cbpc.2007.09.007
25. Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2010 Aug 1;9(4):504-23. https://doi.org/10.2174/187152710791556104
26. Zhang S, Feany MB, Saraswati S, Littleton JT, Perrimon N. Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington’s disease model. Disease models & mechanisms. 2009 Apr 30;2(5-6):247-66. https://doi.org/10.1242/dmm.000653
27. Li Z, Karlovich CA, Fish MP, Scott MP, Myers RM. A putative Drosophila homolog of the Huntington’s disease gene. Human molecular genetics. 1999 Sep 1;8(9):1807-15. https://doi.org/10.1093/hmg/8.9.1807
28. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. science. 1997 Jun 27;276(5321):2045-7. https://doi.org/10.1126/science.276.5321.2045
29. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997 Aug;388(6645):839-40. https://doi.org/10.1038/42166
30. Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 2000 Mar;404(6776):394-8. https://doi.org/10.1038/35006074
31. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998 Jun;393(6686):702-5.
32. Nagaraj R, Banerjee U. The little R cell that could. International Journal of Developmental Biology. 2004 Nov 1;48(8-9):755-60. https://doi.org/10.1387/ijdb.041881rn
33. Vidal M, Warner S, Read R, Cagan RL. Differing Src signaling levels have distinct outcomes in Drosophila. Cancer research. 2007 Nov 1;67(21):10278-85. https://doi.org/10.1158/0008-5472.can-07-1376
34. Bryantsev AL, Cripps RM. Cardiac gene regulatory networks in Drosophila. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2009 Apr 1;1789(4):343-53. https://doi.org/10.1016/j.bbagrm.2008.09.002
35. Zhang Z, Hsieh B, Poe A, Anderson J, Ocorr K, Gibson G, Bodmer R. Complex genetic architecture of cardiac disease in a wild type inbred strain of Drosophila melanogaster. PLoS One. 2013 Apr 29;8(4):e62909. https://doi.org/10.1371/journal.pone.0062909
36. Birse RT, Söderberg JA, Luo J, Winther ÅM, Nässel DR. Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR. Journal of Experimental Biology. 2011 Dec 15;214(24):4201-8. https://doi.org/10.1242/jeb.062091
37. Wang S, Tulina N, Carlin DL, Rulifson EJ. The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proceedings of the National Academy of Sciences. 2007 Dec 11;104(50):19873-8. https://doi.org/10.1073/pnas.0707465104
38. Pendse J, Ramachandran PV, Na J, Narisu N, Fink JL, Cagan RL, Collins FS, Baranski TJ. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC genomics. 2013 Dec;14(1):1-1. https://doi.org/10.1186/1471-2164-14-136
39. www.flybase.org