Volume : 09, Issue : 07, July – 2022



Authors :

Aks*, Dr. Neelam Sharma, Shivani

Abstract :

Rapid advancement in the technology have developed a feasible dosage alternative for pediatrics from the oral route, geriatrics, non-compliant or queasy persons. Mouth dissolving formulations consist of ingredients such as API, polymers, saliva stimulating agents, preservative, flavors, sweetness, film stabilizing agents, surfactants, plasticizers etc. however, polymer is a pivotal ingredient which aid in film formation. Specifically hydrophilic polymers are used for film formation as they disintegrate quickly and have high bioavailability. These mouth dissolving formulations provide rapid, accurate dosing in a safe and efficacious manner, have better patient compliance. In this review article, the different polymers such as pullulan, sodium alginate, maltodextrin, starch, gelatin, pectin, polymerized rosin, Xanthan, HPMC, NaCMC, PVA, PVP, Kollicoat, polyethylene glycol, HPC, HEC, along with their properties and applications are highlighted.
Keywords: – Mouth dissolving films, Polymers, HPMC, Formulation, Applications

Cite This Article:

Please cite this article in press Aks et al, Polymers Used In Mouth Dissolving Formulations: A Review., Indo Am. J. P. Sci, 2022; 09(7).,

Number of Downloads : 10


1. Arun Arya*1, Amrich Chandra1, Vijay Sharma 2 and Kamla Pathak2, Fast Dissolving Oral Films: An Innovative Drug Delivery System and Dosage Form, 2010
2. Priyanka Nagar, Iti Chauhan, Mohd Yasir* Insights into Polymers: Film Formers in Mouth Dissolving Films, Drug Invention Today ISSN: 0975-7619, 2011
3. Kusum Kaushik*, Ram Babu Sharma, Shweta Agarwal, Natural Polymers and their Applications, Int. J. Pharm. Sci. Rev. Res., 37(2), 2016
4. Veeran Gowda Kadajji and Guru V. Betageri *, Water Soluble Polymers for Pharmaceutical Applications, Polymers 2011
5. Naga Sowjanya Juluru*, Fast Dissolving Oral Films: A Review, IJAPBC – Vol. 2, 2013
6. Cilurzo F, Paola M, Andrea C. Maltodextrin Fast –Dissolving Film: A Feasibility Study. Pharma Films Srl, Milano Italy. http://www.tecnova-srl.it/download/film@EUFEPS051.pdf
7. Navneet Kumar Verma et al., Composition, Characterization and Application of Fast Dissolving Oral Film-A Review, Asian Journal of Pharmaceutical Technology & Innovation, 01 (02); 2013; 01-10
8. Reza KH, Chakraborty P; Recent industrial development in Oral Thin Film Technology: An Overview; PharmaTutor; 2016; 4(8); 17-22
9. Chien M J, Tirol G, Chien C, Schmitt R.Film forming polymers in oral films. Poster presented at the 2006 Annual Meeting and Exposition of the American Association of Pharmaceutical Scientist Oct. 29– Nov.2AAPS. 2006; 1-5.
10. Fulzele S V, Satturwar P M, Dorle A K. Polymerised rosin: Novel Film Forming Polymer for drug delivery. Int J Pharm. 2002; 249:175-184. Doi : 10.1016/S0378-5173(02)00529-X
12. Alpesh R. Patel 1, Dharmendra S. Prajapati2, Jignyasha A. Raval3, FAST DISSOLVING FILMS (FDFs) AS A NEWER VENTURE IN FAST DISSOLVING DOSAGE FORM, International Journal of Drug Development & Research | April-June 2010 | Vol. 2 |
13. Loveleen Arora* , Tanushree Chakraborty, A REVIEW ON NEW GENERATION ORODISPERSIBLE FILMS AND ITS NOVEL APPROACHES, Indo American Journal of Pharmaceutical Research, 2017.
14. Dr. Manish Kumar Gupta et al, International Journal of Engineering Science and Generic Research (IJESAR), 2018.
15. Parmar D, Dr. Patel U, Bhimani B, Tripathi A, Daslaniya D, Patel G, Orally Fast Dissolving Films as Dominant Dosage Form for Quick Release, International Journal of Pharmaceutical Research and Bio- Science, 1, 27- 41
16. Aggarwal J, Singh G, Saini S, Rana AC, Fast Dissolving Films: A Novel Approach to Oral Drug Delivery, International Research Journal of Pharmacy, 2, 2011, 69-74.
17. Rekha MR, Sharma CP. Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends BiomaterArtif Organs. 2007;20(2):116-21.
18. V S Rama Krishna Ganduri et al., Effect of Pullulan concentration in fast dissolving films formulation and exploration of film properties / Journal of Pharmacy Research 2016,10(5),211-215
19. R.S. Singh and G.K. Saini, Biosynthesis of Pullulan and Its Applications in Food and Pharmaceutical Industry, Department of Biotechnology , Punjabi University , Patiala
20. Kulkarni A, Deokule H, Mane M, Ghadge DM, Exploration of Different Polymers for Use in The Formulation of Oral Fast Dissolving Strips, Journal of Current Pharmaceutical Research, 2, 2010, 33-35.
21. Islama S, Mollaa A, Sarkera M, Karima M, Yeum J, Fabrication of Pllulan/Silver Nanoparticle Composite Nanospheres Using Electrospray Technique for Antibacterial Applications, International Journal of Basic & Applied Sciences, IJBAS-IJENS, 11, 2011, 59-69.
22. Opinion Of The Scientific Panel On Food Additives, Flavourings, Processing Aids And Materials In Contact With Food On A Request From The Commission Related to Pullulan PI-20 For Use As A New Food Additive, EFSA Journal, 85, 2004, 1-32.
23. Z. Chi, C. Ma, P. Wang, H.F. Li, Optimization Of Medium And Cultivation Conditions For Alkaline Protease Production By The Marine Yeast Aureobasidium Pullulans, Bioresource Technology, 98, 2007, 534–538
24. Murata Y, Isobe T, Kofuji K, Nishida N, Kamaguchi R, Preparation of Fast Dissolving Films For Oral Dosage From Natural Polysaccharides, Materials, 3, 2010, 4291-4299.
25. C laudia, A. R. B.; Bello-Perez, L. A.; Gacia, M. A.; Martino, M. N.; Solorza-Feria, J.; Zaritzky, N. E. Carbohyd. Polym., 2005, 60, 235-244.
26. Rindlav, A.; Hulleman, S. H. D.; Gatenholm, P. Carbohyd. Polym., 1997, 34, 25–30.
27. Krogars, K.; Heinamaki, J.; Karjalainen, M.; Rantanen, J.; Luukkonen, P.; Yliruusi, J. Eur J. Pharm. Biopharm., 2003, 56, 215–221.
28. Mali, S.; Grossmann, M. V. E.; Garcia, M. A.; Martino, M. N. M.; Zaritzky, N. E. Food Hydrocolloid, 2005, 19, 157-164.
29. Milojevic, S.; Newton, J.M.; Cummings, J.H.; Gibson, G.R.; Botham, R.L.; Ring, S.G.; Stockham, M.; Allwood, M.C. Amylose as a Coating for Drug Delivery to the Colon: Preparation and in vitro Evaluation Using 5-Aminosalicylic Acid Pellets. J. Control. Release 1996, 38, 75-84.
30. Désévaux, C.; Dubreuil, P.; Lenaerts, V.; Girard, C. Tissue Reaction and Biodegradation of Implanted Cross-Linked High Amylose Starch in Rats. J. Biomed. Mater. Res. 2002, 63, 772-779.
31. Mulhbacher, J.; Ispas-Szabo, P.; Lenaerts, V.; Mateescu, M.A. Cross-Linked High Amylose Starch Derivatives as Matrices for Controlled Release of High Drug Loadings. J. Control. Rel. 2001, 76, 51-58.
32. Nabais, T.; Brouillet, F.; Kyriacos, S.; Mroueh, M.; Amores da Silva, P.; Bataille, B.; Chebli, C.; Cartilier, L. High-Amylose Carboxymethyl Starch Matrices for Oral Sustained Drug-Release: In vitro and in vivo Evaluation. Eur. J. Pharm. Biopharm. 2007, 65, 371-378. Polymers 2011, 3 2008
33. Teramoto, N.; Motoyama, T.; Yosomiya, R.; Shibata, M. Synthesis, Thermal Properties, and Biodegradability of Propyl-Etherified Starch. Eur. Polym. J. 2003, 39, 255-261.
34. Araújo, M.A.; Cunha, A.; Mota, M. Enzymatic Degradation of Starch-Based Thermoplastic Compounds Used in Protheses: Identification of the Degradation Products in Solution. Biomaterials 2004, 25, 2687- 2693.
35. Zhang, J.F.; Sun, X.Z. Mechanical Properties of PLA/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules 2004, 5, 1446-1451.
36. Pareta, R.; Edirisinghe, M.J. A Novel Method for the Preparation of Starch Films and Coatings. Carbohydr. Polym. 2006, 63, 425-431.
37. Choi, E.J.; Kim, C.H.; Park, J.K. Synthesis and Characterization of Starch-g-Polycaprolactone Copolymer. Macromolecules 1999, 32, 7402-7408.
38. Gomez-Guillen, M. C.; Turnay, J.; Fernandez-Martin, F.; Ulmo, N.; Lizarbe, M. A.; Montero, P. Food Hydrocolloid , 2002, 16, 25-34.
39. Sobral, P. J. A.; Habitante, A. M. Q. B. Food Hydrocolloid 2001, 15, 377–382.
40. Jorge MFC, Vanin FM, Carvalho RA, Moraes ICF, Bittante MQB, Properties of Film-Forming Solutions and Their Films Made By Spreading: Effect of Gelatine Concentration.
41. http;//www.biofilm.co.uk/index.php?option=com_content &view=article&id=59&Itemid=22.Biofilm, Principal film formers.
42. Skurtys O, Acevedo C, Pedreschi F, Enrione J, Osorio F, Aguilera J, Food Hydrocolloid Edible Films and Coatings.
43. Mukhiddinov, Z.K. Isolation and Structural Characterization of a Pectin Homo and Ramnogalacturonan. Talanta 2000, 53, 171-176.
44. Sriamornsak, P. Chemistry of Pectin and Its Pharmaceutical Uses: A Review. Silpakorn Univ. Int. J. 2003, 3, 206-228. Polymers 2011, 3 2003
45. Rolin, C. Pectin. In Industrial Gums, 3rd ed.; Whistler, R.L., BeMiller, J.N., Eds.; Academic Press: New York, NY, USA, 1993.
46. Paoletti, S. Chemistry and Function of Pectins; Fishman, M.L., Jen, J.J., Eds.; American Chemical Society: Washington, DC, USA, 1986.
47. Ginter, E. Natural Hypocholesterolemic Agent: Pectin Plus Ascorbic Acid. Int. J. Vitic. Nat. Res. 1979, 49, 406-408.
48. Kohn, R. Binding of Toxic Cations to Pectin, Its Oligomeric Fragment and Plant Tissues. Carbohydr. Polym. 1982, 2, 273-275.
49. Slany, J. Study of Functional Action of Citrus Pectins in Tablets. Ceska a Slovenska Farmacie 1981, 30, 195-200.
50. Slany, J. Evaluation of Tablets with Pectin as a Binding Agent. Farmaceuticky Obzor. 1981, 50, 491- 498.
51. Krusteva, S. Pharmaceutical Investigation of a Bioerodible Nystatin System. Pharmazie 1990, 45, 195- 197.
52. Wu Y, Weller C, Hamouz F, Cuppett S, Schnepf M. Moisture Loss and Lipid Oxidation for Precooked Ground-Beef Patties Packaged in Edible Starch-Alginate-Based Composite Films. Journal of Food Science. 2001;66(3):486-493.
53. FAO Corporate Document Repository. A Guide to the seaweed industry http://www.fao.org/docrep/006/y4765e/y4765e08.htm
54. Wu Y, Weller CL, Hamouz F, Cuppett S, Schnepf MJ, Food Sci., 2001, 66, 486–93.
55. Chief structure of Maltodextrin http://chief.ecs.umass.edu/index.php?module=phpwsbb& PHPWSBB_MAN_OP=report&PHPWS_MAN_ITEMS[]=434
56. Galus S, Mathieu H, Lenart A, Debeaufort F, Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films, Innovative Food Science and Emerging Technologies, 16, 2012, 148–154
57. El-SetouhyDEl-Malak N. Formulation of a Novel Tianeptine Sodium Orodispersible Film. AAPS PharmSciTech. 2010;11(3):1018-1025.
58. Kunte S, Tandale P. Fast dissolving strips: A novel approach for the delivery of verapamil. J Pharm Bio Sci. 2010;2(4):325-328.
59. Ramani C.C., Puranik P.K., Dorl A.K. Study of diabetic acid as matrix forming material. Int J Pharm. 1996; 137:11-19.
60. Jagtap AR, Mitkare SS, Chalikwar RD, Kulkarni AA. Rosin: A Novel Film Forming Polymer For Pharmaceuticals. Int J Pharm Res Dev. 2010;2(5):210-2.
61. Sharma, B.R.; Naresh, L.; Dhuldhoya, N.C.; Merchant, S.U.; Merchant, U.C. Xanthan Gum—A Boon to Food Industry. Food Promot. Chron. 2006, 1, 27-30.
62. Katzbauer, B. Properties and Applications of Xanthan Gum. Polym. Degrad. Stabil. 1998, 59, 81-84.
63. 2. Borges, C. – Vendruscolo, C: Xanthan Gum: characteristics and operational conditions of production. Semina: Ciências Biológicas e da Saúde, 29, 2008, pp. 171–188. ISSN: 1676-5435.
64. Amanullah, A. – Serrano, L. C. – Galindo, E. – Nienow, A. W.: Reproducibility of pilot scale xanthan fermentations. Biotechnology Progress, 12, 1996, pp. 466–473. DOI: 10.1021/bp960042k.
65. García-Ochoa, F. – Gomez, E. C. – Santos, V. E.: Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbiology Technology, 27, 2000, pp. 680–690. DOI: 10.1016/S0141- 0229(00)00272-6.
66. López, M. J. – Varga-García, M. C. – Suareze strella, F. – Moreno, J.: Properties of xanthan obtained from agricultural wastes acid hydrolysates. Journal of Food Engineering, 63, 2004, pp. 111–115. DOI:10.1016/S0260-8774(03)00289-9.
67. Laws, A. – Gu, Y. – Marshall, V.: Biosynthesis, characterization, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnology Advances, 19, 2001, pp. 597–625. DOI: 10.1016/ S0734-9750(01)00084-2.
68. Jansson, P. – Kenne, L. – Lindberg, B.: Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 45, 1975, pp. 275–282. DOI: 10.1016/S0008-6215(00)85885-1.
69. Rosalam, S. – England, R.: Review of xanthan gum production from unmodified starches by Xanthomonas camprestris sp. Enzyme and Microbial Technology, 39, 2006, pp. 197–207. DOI: 10.1016/j. enzmictec.2005.10.019.
70. Tamasree Majumder, Gopa Roy Biswas and Sutapa Biswas Majee, Hydroxy Propyl Methyl Cellulose: Different Aspects in Drug Delivery, Journal of Pharmacy and Pharmacology 4 (2016) 381-385
71. . Curtis-Fisk J, Sheskey P, Balwinski K, Coppens K, Mohler C, Zhao J. Effect of Formulation Conditions on Hypromellose Performance Properties in Films Used for Capsules and Tablet Coatings. AAPS PharmSciTech. 2012;13(4):1170-1178.
72. Pensak Jantrawut 1,4,*, Hydroxypropyl Methylcellulose E15: A Hydrophilic Polymer for Fabrication of Orodispersible Film Using Syringe Extrusion 3D Printer, Polymers 2020, 12, 2666; doi:10.3390/polym12112666
73. Tubbs, R.K. Sequence Distribution of Partially Hydrolyzed Poly(vinyl acetate). J. Polym. Sci. 1966, 4, 623-629.
74. Hassan, C.M.; Peppas, N.A. Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. Adv. Polym. Sci. 2000, 153, 37-65.
75. Krishna, N.; Brow, F. Polyvinyl Alcohol as an Ophthalmic Vehicle. Effect on Regeneration of Corneal Epithelium. Am. J. Opthalmol. 1964, 57, 99-106.
76. Paton, T.F.; Robinson, J.R. Ocular Evaluation of Polyvinyl Alcohol Vehicle in Rabbits. J. Pharm. Sci. 1975, 64, 1312-1316.
77. Wan, L.S.C.; Lim, L.Y. Drug Release from Heat Treated Polyvinyl Alcohol Films. Drug Dev. Ind. Pharm. 1992, 18, 1895-1906.
78. Teckoe J, Labriola A, Hansell J, Tom Farrell Stability Study of PEG Free, PVA Based Film Coating System, AAPS, 2012, 1-4.
79. Yogyata S. Pathare*, Polymers used for Fast Disintegrating Oral Films: A Review, Int. J. Pharm. Sci. Rev. Res., 21(1), Jul – Aug 2013; n° 29, 169-178
80. Janssensa S, Armas HN, Remonc JP, Mooter GVD, The use of a new hydrophilic polymer, Kollicoat IR®, in the formulation of solid dispersions of Itraconazole, European Journal of Pharmaceutical Sciences, 30, 2007, 288–294.
81. Okhamafe A and York P. Mechanical properties of some pigmented and unpigmented aqueous-based film coating formulations applied to aspirin tablets. J Pharm Pharmacol. 1886; 38: 414-419.
82. Sivaiah K, Kumar KN, Naresh V, Buddhudu S. Structural and optical properties of Li+: PVP & Ag+: PVP polymer films. Materials Sciences and Applications. 2011 Nov 16;2(11):1688-89.
83. Haaf, F.; Sanner, A.; Straub, F. Polymers of NVinylpyrrolidone: Synthesis, Characterization and Uses. Polymer Journal, 1985, 17 (1), 143–152.
84. Ali, S.; Quadir, A. High molecular weight povidone polymer-based films for fast dissolving drug delivery applications, Drug Del. Technol., 2007, 7 (6) , 36–43.
85. Chowhan, Z.T. Role of Binders in Moisture-Induced Hardness Increase in Compressed Tablets and Its Effect on in vitro Disintegration and Dissolution. J. Pharm. Sci. 1980, 69, 1-4.
86. Chowhan, Z.T.; Amaro, A.A.; Ong, J.T.H. Punch Geometry and Formulation Considerations in Reducing Tablet Friability and Their Effect on in vitro Dissolution. J. Pharm. Sci. 1992, 81, 290-294.
87. Sinchalpanid, N.; Mitrevej, A. Comparative Evaluation of Hydroxypropyl Cellulose and Povidone in Paracetamol Tablet Formulations. Mahidol J. Pharm. Sci. 1993, 20, 33-39.
88. Stone, I.M. Water Dispersible Antibiotics. U.S. Patent 3,089,818, 14 May 1963.
89. Forster, A.; Hempenstall, J.; Rades, T. Characterization of Glass Solutions of Poorly Water-Soluble Drugs Produced by Melt Extrusion with Hydrophilic Amorphous Polymers. J. Pharm. Pharmacol. 2001, 53, 303-315.
90. Jijun, F.; Lishuang, X.; Xiaoli, W.; Shu, Z.; Xiaoguang, T.; Xingna, Z.; Haibing, H.; Xing, T. Nimodipine (NM) Tablets with High Dissolution Containing NM Solid Dispersions Prepared by Hot-Melt Extrusion. Drug Dev. Ind. Pharm. 2011, 37, 934-944.
91. He, H.; Yang, R.; Tang, X. In vitro and in vivo Evaluation of Fenofibrate Solid Dispersion Prepared by Hot-Melt Extrusion. Drug Dev. Ind. Pharm. 2010, 36, 681-687.
92. Chokshi, R.J.; Sandhu, H.K.; Iyer, R.M.; Shah, N.H.; Malick, W.A.; Zia, H. Characterization of Physico- Mechanical Properties of Indomethacin and Polymers to Assess Their Suitability for Hot-Melt Extrusion Process as a Means to Manufacture Solid Dispersion/Solution. J. Pharm. Sci. 2005, 94, 2463-2474.
93. Jachowicz, R. Dissolution Rates of Partially Water Soluble Drugs from Solid Dispersion Systems. II. Phenytoin. Int. J. Pharm. 1987, 35, 7-12.
94. White, R.K. Pharmaceutical Compositions Containing Polyvinylpyrrolidone and a Tri-Ester and a Process of Manufacture Thereof. Internat. Patent WO/1994/025008, 10 November 1994.
95. Bühler, V. Polyvinylpyrrolidone Excipients for Pharmaceuticals: Povidone, Crospovidone and Povidone, 1st ed.;Springer: Berlin, Germany, 2005.
96. Prodduturi S, Manek R, Kolling W, Stodghill S, Repka M, Solidstate stability and characterization of hot-melt extruded poly(ethylene oxide) films, Journal of Pharmaceutical Sciences, 94, 2005, 2232–2245.
97. Mari Granström, Cellulose Derivatives: Synthesis, Properties and Applications, Department of Chemistry Faculty of Science University of Helsinki Finland, 2009.
98. Hadi Seddiqi . Erfan Oliaei et. al., Cellulose and its derivatives: towards biomedical applications, Cellulose (2021) 28:1893–1931, 2021
99. Wu Y, Weller CL, Hamouz F, Cuppett S, Schnepf M, Moisture Loss And Lipid Oxidation For Precooked Ground-Beef Patties Packaged In Edible Starch-Alginate-Based Composite Films, Journal of Food Science, 66, 2001, 486-493.
100. Skurtys O, Acevedo C, Pedreschi F, Enrione J, Osorio F, Aguilera J, Food Hydrocolloid Edible Films and Coatings.
102. Amjad Hussain1 *, Sadia Latif et.al., Hydroxypropyl cellulose-based orally disintegrating films of promethazine HCl for the treatment of motion sickness, Tropical Journal of Pharmaceutical Research June 2018; 17 (6): 991-996.
103. Francesco, Cilurzo.; Irma E, Cupone .; Paola, Minghetti.; Susanna, Buratti.; Francesca, Selmin. Nicotine Fast Dissolving Films Made of Maltodextrin: A feasibility study, APPS Pharm Sci Tech, 2010, 11(4), 1511-1517.
104. Prodduturi S, Manek R, Kolling W, Stodghill S, Repka M, Solidstate stability and characterization of hot-melt extruded poly(ethylene oxide) films, Journal of Pharmaceutical Sciences, 94, 2005, 2232–2245.
105. S. Kamel1,3*, N. Ali1,et. al., Pharmaceutical significance of cellulose: A review, eXPRESS Polymer Letters Vol.2, No.11 (2008) 758–778, 2008.
106. Katharina M. Picker-Freyer1 and Thomas Dürig, Physical Mechanical and Tablet Formation Properties of Hydroxypropylcellulose: In Pure Form and in Mixtures, AAPS PharmSciTech 2007; 8 (4) Article 92 (http://www.aapspharmscitech.org).
107. Ashish Sarode,1,2 Peng Wang,1,2 Catherine Cote,3 and David R. Worthen1,2,4, Low-Viscosity Hydroxypropylcellulose (HPC) Grades SL and SSL: Versatile Pharmaceutical Polymers for Dissolution Enhancement, Controlled Release, and Pharmaceutical Processing, AAPS PharmSciTech, Vol. 14, No. 1, March 2013 (# 2012) DOI: 10.1208/s12249-012-9897-x.
108. Rozhan A. Muhammed*, Huner K. Omer, Formulation and Evaluation of Fast Dissolving Oral Film of Imipramine, Polytechnic Journal. 2020. 10(1): 182-188 ISSN: 2313-5727 http://journals.epu.edu.iq/index.php/polytechnic.
109. Jwan Mohammed Ahmed1 * Dina Aziz Boya1 Hunar Kamal, Formulation of a fast-dissolving oral film using ……. Zanco J. Med. Sci., Vol. 24, No. (3), December, 2020 https://doi.org/10.15218/zjms.2020.040
110. Rajesh Krishna *, J K Pandit, Carboxymethylcellulose-sodium Based Transdermal Drug Delivery System for Propranolol #, Journal of Pharmacy and Pharmacology, Volume 48,Issue 4, April 1996, Pages 367-370, https://doi.org/10.1111/j.2042-7158.1996.tb05934.X
111. Durgaramani Sivadasan*, Muhammad Hadi Sultan, Formulation and in vitro evaluation of orodispersible tablets of fexofenadine hydrochloride, Tropical Journal of Pharmaceutical Research May 2020; 19 (5): 919-925.
112. Anjum Pathan et al., Formulation and evaluation of fast dissolving oral film of promethazine hydrochloride using different surfactant, Journal of Innovations in Pharmaceuticals and Biological Sciences., JIPBS, Vol 3 (1), 74-84, 2016
113. Podczeck, F.; Knight, P.E.; Newton, J.M. The evaluation of modified microcrystalline cellulose for the preparation of pellets with high drug loading by extrusion/ spheronization, Int. J. Pharm., 2008, 350, 145–154.
114. Verena, G.; Jorg, B. Comparative investigation on different polymers for the preparation of fast dissolving oral films, J of Pharm and Pharmacol, 2010, 62, 539-545.
115. Ying-Chen Chen1,* Hsiu-O Ho1,*et al., Development and characterization of a gastroretentive dosage form composed of chitosan and hydroxyethyl cellulose for alendronate, Drug Design, Development and Therapy 2014:8 67–78.
116. Mitsuyuki MATSUO, Chizuko NAKAMURA, Kazuhiko ARIMORI, and Masahiro NAKANO*, Evaluation of HydroxyethyIcellulose as a Hydrophilic Swellable Material for Delayed-Release Tablets, Chem. Pharm. Bull. 43(2) 311–314 (1995)
117. Kun Luo, Jingbo Yin,* Olga V. Khutoryanskaya, Vitaliy V. Khutoryanskiy*, Mucoadhesive and Elastic Films Based on Blends of Chitosan and Hydroxyethylcellulose, Macromol. Biosci. 2008, 8, 184–192
119. Dhagla Ram Choudhary et al., Formulation and Evaluation of Fast Dissolving Film of Levocetirizine Dihydrochloride Using Different Grades of Methocel Journal of Pharmacy Research 2011,4(9),2919- 2924
120. Kulkarni A. S. et al., Exploration of different polymers for use in the formulation of oral fast dissolving strips, Journal of Current Pharmaceutical Research 2010; 2(1): 33-35
121.M.E. Sangalli et al., Different HPMC viscosity grades as coating agents for an oral time and/or site- controlled delivery system: a study on process parameters and in vitro performances, European Journal of Pharmaceutical Sciences 22 (2004) 469–476
122. Doelker, E. 1993. “Cellulose Derivatives.” Adv. Polym. Sci. 107: 199-265.
123. Sangalli, M. E., Maroni, A., Foppoli, A., Zema, L., Giordano, F., and Gazzaniga, A. 2004. “Different HPMC Viscosity Grades as Coating Agents for an Oral Time and/or Site-controlled Delivery System: A Study on Process Parameters and in vitro Performances.” Eur. J. Pharm. Sci. 22 (5): 469-76.
124.M.E. Sangalli et al. /Different HPMC viscosity grades as coating agents for an oral time and/or site- controlled delivery system: a study on process parameters and in vitro performances, European Journal of Pharmaceutical Sciences 22 (2004) 469–476
125.S Shanmagam*, et al., natural polymers and their applications, Adhiparasakthi college of pharmacy, Melmaruvathur, Natural product radiance, Vol 4(6) November-December 2005.
126. Kulkarni Vishakha S* , Natural Polymers – A Comprehensive Review, International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701, Vol. 3 (4) Oct – Dec 2012.
127. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288-6308.
128. Alderman D. A. A.: Review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. International Journal of Pharmaceutical Technology and Product Manufacture, 5, 1–9 (1984).
129. ] Bochek A. M.: Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russian Journal of Applied Chemistry, 76, 1711– 1719 (2003).
130. ] Myasoedova V. V.: Physical chemistry of non-aqueous solutions of cellulose and its derivatives. John Wiley and Sons, Chirchester (2000).
131. Klemm D., Heublein B., Fink H-P. Bonn A.: Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie, International Edition, 44, 3358–3393 (2005).
132. *Harsh Bansal et al., MICROSPHERE: METHODS OF PREPRATION AND APPLICATIONS; A COMPARATIVE STUDY, International Journal of Pharmaceutical Sciences Review and Research, Volume 10, Issue 1, September – October 2011; Article-012.
133. Gavasane AJ, Pawar HA (2014) Synthetic Biodegradable Polymers Used in Controlled Drug Delivery System: An Overview. Clin Pharmacol Biopharm 3:121.doi:10.4172/2167-065X.1000121
134. Nair LS, Laurencin CT (2006) Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery. Adv Biochem Eng Biotechnol 102: 47-90.
135. Kotwal VB, Saifee M, Inamdar N, Bhise K (2007) Biodegradable polymers: Which, when and why? 16- 625.