Volume : 09, Issue : 05, May – 2022

Title:

01.NANOSPHERES – AN OVERVIEW

Authors :

Blessy M R*, Subash Chandran M P, Remya S B, Aparna P

Abstract :

Nanospheres have small particle size; thus they are suitable to be administered orally, locally, and systemically. Usually most nanospheres are prepared using polymers that are biodegradable and biocompatible. They are used as delivery system in order to enhance entrapment and release of the drug.
Key words: Nanosphere, nanotechnology, PLGA Nanosphere.

Cite This Article:

Please cite this article in press Blessy M.R et al, Nanospheres – An Overview., Indo Am. J. P. Sci, 2022; 09(05).,

Number of Downloads : 10

References:

1. Carter J, Saunders V. Virology: Principles and Applications. Chichester: John Wiley & Sons; 2007.
2. Amorij JP, Huckriede A, Wilschut J, Frijlink HW, Hinrichs WLJ. Development of stable influenza vaccine powder formulations: Challenges and possibilities. Pharm Res . 2008;25:1256–1273.
3. Smith DM, Simon JK, Baker JR ., Jr Applications of nanotechnology for immunology. Nat Rev Immunol . 2013;13:592–605.
4. Tafaghodi M, Eskandari M, Kharazizadeh M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Trop Biomed . 2010;27:639–650.
5. Mohaghegh M, Tafaghodi M. Dextran microspheres could enhance immune responses against PLGA nanospheres encapsulated with tetanus toxoid and Quillaja saponins after nasal immunization in rabbit. Pharm Dev Technol . 2011;16:36–43.
6. Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A, Shang H, et al. A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res Treat. 2011;2011:126794.
7. Keijzer C, Slütter B, van der Zee R, Jiskoot W, van Eden W, Broere F. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS One . 2011;6:e26684.
8. Zaman M, Chandrudu S, Toth I. Strategies for intranasal delivery of vaccines. Drug Deliv Transl Res. 2013;3:100–109.
9. Dehghan S, Tavassoti Kheiri M, Tabatabaiean M, Darzi S, Tafaghodi M. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization. Arch Pharm Res . 2013;36:981–992.
10. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release . 2002;82:105–114.
11. Alpar HO, Almeida AJ. Identification of some of the physico-chemical characteristics of microspheres which influence the induction of the immune response following mucosal delivery. Eur J Pharm Biopharm. 1994;40:198–202.
12. Khameneh B, Momen-Nejad M, Tafaghodi M. In vivo evaluation of mucoadhesive properties of nanoliposomal formulations upon coating with trimethylchitosan polymer. Nanomed J . 2014;1:147–154.
13. Yang L, Chen L, Zeng R, Li C, Qiao R, Hu L, et al. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: Chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg Med Chem. 2010;18:117–123.
14. Xue SW. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: Part III. Drug delivery application. Artif Cells Blood Substit Immobil Biotechnol. 2004;32:575–591.
15. Benelli P, Conti B, Genta I, Costantini M, Montanari L. Clonazepam microencapsulation in poly-D,L-lactide-co-glycolide microspheres. J Microencapsul . 1998;15:431–443.