Volume : 09, Issue : 05, May – 2022

Title:

08.THERAPEUTIC APPLICATION FOR DRUG DELIVERY USING NEW BIOMIMETIC POLYMERSOMES

Authors :

Shalini. K, Reeta. M, L.V. Vigneshwaran*, M. Senthilkumar

Abstract :

Biomimetics has resulted in a significant increase in advanced particle systems that imitate biological cells. Polymersomes are amphiphilic block copolymers that allow for the controlled release of hydrophilic and hydrophobic drug molecules. The surface modification allows for targeted drug administration, protein transport, medical imaging, nanoreactors, artificial organelles, and biosensors. The self-assembling process and size are affected by factors such as polymer content, temperature, and shear pressures. They provide highly specific and customizable biologic responses with little toxicity, making them a safe and effective delivery option for the future creation of efficient therapeutic vectors.
Keywords: Polymersomes, cancer drug delivery, vaccine delivery, nucleic acid delivery

Cite This Article:

Please cite this article in press L.V.Vigneshwaran et al, Therapeutic Application For Drug Delivery Using New Biomimetic Polymersomes., Indo Am. J. P. Sci, 2022; 09[5].,

Number of Downloads : 10

References:

1. Tanner, P., Baumann, P., Enea, R., Onaca, O., Palivan, C., & Meier, W. [2011]. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Accounts of chemical research, 44[10], 1039-1049.
2. Taubert, A., Napoli, A., & Meier, W. [2004]. Self-assembly of reactive amphiphilic block copolymers as mimetics for biological membranes. Current opinion in chemical biology, 8[6], 598-603.
3. Discher, D. E., & Eisenberg, A. [2002]. Polymer vesicles. Science, 297[5583], 967-973.
4. Meng, F., Zhong, Z., & Feijen, J. [2009]. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules, 10[2], 197-209.
5. Blanazs, A., Armes, S. P., & Ryan, A. J. [2009]. Self‐assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromolecular rapid communications, 30[4‐5], 267-277.
6. Massignani, M.; Lomas, H.; Battaglia, G., Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery, Adv. Polym. Sci., 2010, 229, 115-154.
7. Van Dongen, S. F., Nallani, M., Schoffelen, S., Cornelissen, J. J., Nolte, R. J., & van Hest, J. C. [2008]. A block copolymer for functionalization of polymersome surfaces. Macromolecular rapid communications, 29[4], 321-325.
8. Meng, F., Zhong, Z., & Feijen, J. [2009]. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules, 10[2], 197-209.
9. Discher, B. M.; Won, Y. –Y.; Ege, D. S.; Lee, J. C. –M.; Bates, F. S.; Discher, D. E.; Hammer, D. A., Polymersomes: Tough Vesicles Made from Diblock Copolymers, Science, 1999, 284, 1143-1146.
10. Lee, H. J.; Yang, S. R.; An, E. J.; and Kim, J. –D., Biodegradable Polymersomes from Poly[2-hydroxyethyl aspartame] Grafted with Lactic Acid Oligomers in Aqueous Solution, Macromolecules, 2006, 39, 4938-4940.
11. Discher, D. E., & Ahmed, F. [2006]. Polymersomes. Annu. Rev. Biomed. Eng., 8, 323-341.
12. Meng, F., Engbers, G. H., & Feijen, J. [2005]. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release, and targeting. Journal of Controlled Release, 101[1-3], 187-198.
13. Onaca, O., Nallani, M., Ihle, S., Schenk, A., & Schwaneberg, U. [2006]. Functionalized nano compartments [Synthosomes]: Limitations and prospective applications in industrial biotechnology. Biotechnology Journal: Healthcare Nutrition Technology, 1[7‐8], 795-805.
14. Malinova, V., Belegrinou, S., Bruyn Ouboter, D. D., & Meier, W. P. [2009]. Biomimetic block copolymer membranes. Polymer membranes/biomembranes, 87-111.
15. Nallani, M., Benito, S., Onaca, O., Graff, A., Lindemann, M., Winterhalter, M., … & Schwaneberg, U. [2006]. A nanocompartment system [synthosome] designed for biotechnological applications. Journal of Biotechnology, 123[1], 50-59.
16. Nardin, C., Widmer, J., Winterhalter, M., & Meier, W. [2001]. Amphiphilic block copolymer nanocontainers as bioreactors. The European Physical Journal E, 4[4], 403-410.
17. Kim, Y., Tewari, M., Pajerowski, J. D., Cai, S., Sen, S., Williams, J., … & Discher, D. E. [2009]. Polymersome delivery of siRNA and antisense oligonucleotides. Journal of Controlled Release, 134[2], 132-140.
18. Ahmed, F., Pakunlu, R. I., Brannan, A., Bates, F., Minko, T., & Discher, D. E. [2006]. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to the accumulated drug. Journal of Controlled Release, 116[2], 150-158.
19. Ahmed, F., Pakunlu, R. I., Srinivas, G., Brannan, A., Bates, F., Klein, M. L., … & Discher, D. E. [2006]. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Molecular Pharmaceutics, 3[3], 340-350.
20. Discher, D. E., Ortiz, V., Srinivas, G., Klein, M. L., Kim, Y., Christian, D., … & Ahmed, F. [2007]. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Progress in polymer science, 32[8-9], 838-857.
21. Levine, D. H., Ghoroghchian, P. P., Freudenberg, J., Zhang, G., Therien, M. J., Greene, M. I., … & Murali, R. [2008]. Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods, 46[1], 25-32.
22. Wang, X., Sun, H., Meng, F., Cheng, R., Deng, C., & Zhong, Z. [2013]. Galactose-decorated reduction-sensitive degradable chimeric polymersomes as a multifunctional nanocarrier to efficiently chaperone apoptotic proteins into hepatoma cells. Biomacromolecules, 14[8], 2873-288.
23. Zhang, J., Wu, L., Meng, F., Wang, Z., Deng, C., Liu, H., & Zhong, Z. [2012]. pH and reduction of dual-bioresponsive polymersomes for efficient intracellular protein delivery. Langmuir, 28[4], 2056-2065.
24. Scott, E. A., Stano, A., Gillard, M., Maio-Liu, A. C., Swartz, M. A., & Hubbell, J. A. [2012]. Dendritic cell activation and T cell priming with adjuvant-and antigen-loaded oxidation-sensitive polymersomes. Biomaterials, 33[26], 6211-6219.
25. Stano, A., Scott, E. A., Dane, K. Y., Swartz, M. A., & Hubbell, J. A. [2013]. Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials, 34[17], 4339-4346.
26. Arigita, C., Zuidam, N. J., Crommelin, D. J., & Hennink, W. E. [1999]. Association and dissociation characteristics of polymer/DNA complexes used for gene delivery. Pharmaceutical Research, 16[10], 1534-1541.
27. Brown, M. D., Schätzlein, A., Brownlie, A., Jack, V., Wang, W., Tetley, L., … & Uchegbu, I. F. [2000]. Preliminary characterization of novel amino acid-based polymeric vesicles as gene and drug delivery agents. Bioconjugate Chemistry, 11[6], 880-891.
28. Brown, M. D., Gray, A. I., Tetley, L., Santovena, A., Rene, J., Schätzlein, A. G., & Uchegbu, I. F. [2003]. In vitro and in vivo gene transfer with poly [amino acid] vesicles. Journal of controlled release, 93[2], 193-211.
29. Brownlie, A., Uchegbu, I. F., & Schätzlein, A. G. [2004]. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. International journal of pharmaceutics, 274[1-2], 41-52.
30. Pangburn, T. O., Georgiou, K., Bates, F. S., & Kokkoli, E. [2012]. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. Langmuir, 28[35], 12816-12830.
31. Kim, H. O., Kim, E., An, Y., Choi, J., Jang, E., Choi, E. B., … & Haam, S. [2013]. A biodegradable polymersome containing Bcl‐xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromolecular bioscience, 13[6], 745-754.
32. Li, Z., Li, J., Huang, J., Zhang, J., Cheng, D., & Shuai, X. [2015]. Synthesis and Characterization of pH‐Responsive Copolypeptides Vesicles for siRNA and Chemotherapeutic Drug Co‐Delivery. Macromolecular bioscience, 15[11], 1497-1506.