Volume : 09, Issue : 05, May – 2022

Title:

43.FORMULATION AND EVALUATION OF LIQUID CRYSTALS CONTAINING ACOTIAMIDE CAPSULE FOR ORAL DELIVERY

Authors :

Dr. Sandip. R. Pawar, Mr. Jayesh Pratap Patil, Dr. Bharat .V. Jain, Mr. Tanveer.Y. Shaikh

Abstract :

The liquid crystals called as mesophase inter mediate between the crystalline solid state and therefore the amorphous liquid state. (Lagerwall, 2012) Liquid Crystals nano carriers are an intermediary state between the solid and liquid state. it’s mostly named a mesomorphic state. (Imran, 2012) From reverse cubic phase colloidal particles are interior aqueous zones also afford certain benefits in technical applications compared by means of droplets of general oil-in-water emulsions The liquid could be a substance that which is thermodynamically situated in within the middle of the isotropic liquid and therefore the crystalline phase. They show flow properties sort of a liquid and at the identical time partly hold the order of a crystal. (Dierking, 2017) The liquid are often deliberated 1 / 4 states of matter following solid, liquid, and gas. Liquid-crystal phases, as their name suggests, be existent between the predictable crystal phase and therefore the liquid phase.
Keywords- Acotiamide, Poloxamer 407, Liquid crystal.

Cite This Article:

Please cite this article in press Jayesh Pratap Patil et al, Formulation And Evaluation Of Liquid Crystals Containing Acotiamide Capsule For Oral Delivery., Indo Am. J. P. Sci, 2022; 09(5).,

Number of Downloads : 10

References:

1. DUMORTIER, G., GROSSIORD, J. L., AGNELY, F. & CHAUMEIL, J. C. 2006. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharmaceutical research, 23, 2709-2728.
2. EL-ENIN, H. A. & AL-SHANBARI, A. H. 2018. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharmaceutical Journal, 26, 790-800.
3. ESTAFANOUS, F. G., BARASH, P. G. & REVES, J. 2001. Cardiac anesthesia: principles and clinical practice, Lippincott Williams & Wilkins.
4. GARG, G., SARAF, S. & SARAF, S. 2007. Cubosomes: an overview. Biological and Pharmaceutical Bulletin, 30, 350-353.
5. GAUS, M. & NABI, B. Available through Online Review Article www. ijptonline. com.
6. GURBEL, P. A., BLIDEN, K. P., HAYES, K. M., YOHO, J. A., HERZOG, W. R. & TANTRY, U. S. 2005. The relation of dosing to clopidogrel responsiveness and the incidence of high post-treatment platelet aggregation in patients undergoing coronary stenting. Journal of the American College of Cardiology, 45, 1392-1396.
7. IMRAN, T., SADHANA, S., VIVEK, R. & IFTEQUAR, S. 2012. Liquid crystals pharmaceutical application. J. International Pharmaceutical Research & Allied Sciences, 1, 6-11.
8. IWABATA, K., SUGAI, U., SEKI, Y., FURUE, H. & SAKAGUCHI, K. 2013. Applications of biomaterials to liquid crystals. Molecules, 18, 4703-4717.
9. JAIN, P., BADRESHIYA, P., CHALIKWAR, S., TODARWAL, A. & SURANA, S. 2012. Validation of a dissolution method with RP-HPLC analysis for perindopril erbumine and indapamide combination tablet. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 18, 19-25.
10. LAGERWALL, J. P. & SCALIA, G. 2012. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio-and microtechnology. Current Applied Physics, 12, 1387-1412.
11. LAMPIS, S., CARBONI, M., STERI, D., MURGIA, S. & MONDUZZI, M. 2018. Lipid based liquid-crystalline stabilized formulations for the sustained release of bioactive hydrophilic molecules. Colloids and Surfaces B: Biointerfaces, 168, 35-42.
12. LINKEVIČIŪTĖ, A., MISIŪNAS, A., NAUJALIS, E. & BARAUSKAS, J. 2015. Preparation and characterization of quercetin-loaded lipid liquid crystalline systems. Colloids and surfaces B: Biointerfaces, 128, 296-303.
13. MITTAL, S., DOYLE, M. J. & PORTREY, A. M. 2014. Human in the Loop in System of Systems (SoS) Modeling and Simulation: Applications to Live, Virtual, and Constructive (LVC) Distributed Mission Operations (DMO) Training. Modeling and Simulation Support for System of Systems Engineering Applications, 415-451.
14. NASR, M., GHORAB, M. K. & ABDELAZEM, A. 2015. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta pharmaceutica sinica B, 5, 79-88.
15. OLA, M., BHASKAR, R. & PATIL, G. R. 2018. LIQUID CRYSTALLINE DRUG DELIVERY SYSTEM FOR SUSTAINED RELEASE LOADED WITH AN ANTITUBERCULAR DRUG. Journal of Drug Delivery and Therapeutics, 8, 93-101.
16. PENG, X., ZHOU, Y., HAN, K., QIN, L., DIAN, L., LI, G., PAN, X. & WU, C. 2015. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug design, development and therapy, 9, 4209.
17. RAO, S. V., SRAVYA, B. N. & PADMALATHA, K. 2018. A review on cubosome: The novel drug delivery system. GSC Biological and Pharmaceutical Sciences, 5, 076-081.
18. SAGALOWICZ, L., MEZZENGA, R. & LESER, M. E. 2006. Investigating reversed liquid crystalline mesophases. Current Opinion in Colloid & Interface Science, 11, 224-229.
19. SERPE, L., CATALANO, M. G., CAVALLI, R., UGAZIO, E., BOSCO, O., CANAPARO, R., MUNTONI, E., FRAIRIA, R., GASCO, M. R. & EANDI, M. 2004. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. European Journal of Pharmaceutics and Biopharmaceutics, 58, 673-680.
20. SHAH, M. H. & PARADKAR, A. 2005. Cubic liquid crystalline glyceryl monooleate matrices for oral delivery of enzyme. International journal of pharmaceutics, 294, 161-171.