Volume : 09, Issue : 05, May – 2022

Title:

52.TO DESIGN AND DEVELOP SOLID LIPID NANOPARTICLES BASED NANOGEL FOR DERMAL DELIVERY OF MELOXICAM

Authors :

Dr. Sandip.R. Pawar, Miss. Shivani Sandip Patil*, Dr. Bharat.V. Jain, Mr. Tanveer.Y. Shaikh.

Abstract :

Topical drug delivery can be defined as application of medication containing formulation to the skin to directly treat the cutaneous or subcutaneous disorders and diseases like acne or fungal infections by providing the drug to the surface of the skin or within the skin. In spite of many advantages of transdermal and dermal drug delivery over other drug delivery system, relatively few topical drug formulations are commercially available in market. The main challenging step in the topical delivery is the crossing of most impermeable epithelia of human body that is stratum corneum. Stratum corneum becomes a barrier for the exogenetic substances. Hence this fact is to be considered at the time of formulating a new formulation for the topical administration of drug so that maximum penetration of the drug into the skin without irreversible disturbing the skin barrier function can be achieved.
KEYWORDS- Nanoparticles, Nanogel, Meloxicam

Cite This Article:

Please cite this article in press Shivani Sandip Patil et al, To Design And Develop Solid Lipid Nanoparticles Based Nanogel For Dermal Delivery Of Meloxicam., Indo Am. J. P. Sci, 2022; 09(5).,

Number of Downloads : 10

References:

1. Pandya JB, Parmar RD, Soniwala MM, Chavda JR. Solid lipid nanoparticles: overview on excipients. Asian Journal of Pharmaceutical Technology & Innovation. 2013;1(3):01-9.
2. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian journal of pharmaceutical sciences. 2009 Jul;71(4):349.
3. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics. 2000 Jul 3;50(1):161-77.
4. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. Journal of Controlled release. 2008 Apr 21;127(2):97-109.
5. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Advanced drug delivery reviews. 2007 Jul 10;59(6):478-90.
6. Vyas SP, Khar RK. Controlled drug delivery concepts and advances. vallabh prakashan. 2002;1:411-7.
7. Vyas SP, Khar RK. Controlled drug delivery concepts and advances. vallabh prakashan. 2002;1:411-7.
8. Lee CH, Chien YW. Drug delivery: Vaginal route. InEncyclopedia of Pharmaceutical Science and Technology, Fourth Edition 2013 Jul 1 (pp. 1236-1259). CRC Press.
9. Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International journal of nanomedicine. 2007 Sep;2(3):289.
10. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. Journal of Controlled release. 2008 Apr 21;127(2):97-109.
11. zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. European journal of pharmaceutics and biopharmaceutics. 1998 Mar 1;45(2):149-55.
12. Kuo YC, Chen HH. Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. International journal of pharmaceutics. 2009 Jan 5;365(1-2):206-13.
13. Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, Mehta A, Vyas SP. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2009 Jun 1;5(2):184-91.
14. Suresh G, Manjunath K, Venkateswarlu V, Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. Aaps Pharmscitech. 2007 Mar;8(1):E162-70.
15. Teja VC, Chowdary VH, Raju YP, Surendra N, Vardhan RV, Reddy BK. A glimpse on solid lipid nanoparticles as drug delivery systems. J Glob Trends Pharm Sci. 2014;5(2):1649-57.
16. Ekambaram P. Formulation and Evaluation of PH Triggered In Situ Gelling System of Levofloxacin (Doctoral dissertation, Madurai Medical College, Madurai).
17. Abdelbary G, Fahmy RH. Novel Drug Delivery. AAPS Pharm. Sci. Tech. 2009;10(1):1.
18. Harivardhan Reddy L, Murthy RS. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPs PharmSciTech. 2005 Jun;6(2):E158-66.
19. Sandhu P, Bilandi A, Kumar S, Rathore D, Bhardwaj S. Additives in topical dosage forms. IJPCBS. 2012;2(1):78-96.
20. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical research. 1995 Mar;12(3):413-20.
21. Dao Thanh T. Desarrollo galénico de nuevas formulaciones inyectables de meloxicam y amoxicilina sódica para uso veterinario.
22. Burke A, Smyth E, FitzGerald GA. Analgesic-antipyretic agents; pharmacotherapy of gout. The pharmacological basis of therapeutics. 2006;1:706.
23. Oliveira IM, Fernandes DC, Cengiz IF, Reis RL, Oliveira JM. Hydrogels in the treatment of rheumatoid arthritis: Drug delivery systems and artificial matrices for dynamic in vitro models. Journal of Materials Science: Materials in Medicine. 2021 Jul;32(7):1-3.
24. PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 54677470, Meloxicam; [cited 2022 Apr. 30]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Meloxicam