Volume : 09, Issue : 11, November – 2022

Title:

08.AN OVERVIEW OF PHARMACODYNAMIC PROPERTIES OF INHALED CORTICOSTEROIDS

Authors :

Abdullah Suliman Salmain Bablghayth, Taha Mohammed Bakhsh, Hasan Ali Balgasem Alsahabi, Mohammed Mhwes Abdullah Almalki, Khaled Ibrahim Ali Alzahrani, Abdullah Ahmed Saleh Alzahrani, Majed Ahmed Mohammed Asiri, Ali Ahmed Alaflaghy, Khaled Abdullelah Alansari, Abdulrahman Hassan Edan Alomari, Naif Yahya Ali Ghil

Abstract :

This article was aimed to review the pharmacodynamic of inhaled corticosteroids, by conducting search throughout the literature, using the PubMed and Medline, including all relevant studies that were published to beginning of 2022. The PK and PD properties of ICSs used to treat asthma, as well as the significance of their interactions, have been studied. When prescribing an ICS to an asthmatic patient, the differences in PK and PD must be considered because a better understanding of the PK/PD interrelationship of ICSs may be important to better fit with the between-patient variability and within-patient repeatability in the response to ICSs, which frequently complicate the therapeutic approach to the asthmatic patient.

Cite This Article:

Please cite this article in press Abdullah Suliman Salmain Bablghayth et al, An Overview Of Pharmacodynamic Properties Of Inhaled Corticosteroids., Indo Am. J. P. Sci, 2022; 09(11).

Number of Downloads : 10

References:

1. Global Initiative for Asthma. Global strategy for asthma management and prevention. Updated 2006. Available at: www.ginasthma.org. Accessed December 2006.
2. National Asthma Education and Prevention Program. Expert panel report: guidelines for the diagnosis and management of asthma update on selected topics—2002. J Allergy Clin Immunol. 2002;110(suppl):S141-S219.
3. National Center for Health Statistics. Asthma prevalence, health care use and mortality, 2002. Available at: http://www.cdc .gov/nchs/products/pubs/pubd/hestats/asthma/asthma.htm.
4. H.K. Reddel, E.D. Bateman, A. Becker, et al., A summary of the new GINA strategy: a roadmap to asthma control, Eur. Respir. J. 46 (3) (2015) 622–639.
5. I.M. Adcock, S. Mumby, Glucocorticoids, Handb. Exp. Pharmacol. 237 (2017) 171–196.
6. P.T. Daley-Yates, Inhaled corticosteroids: potency, dose equivalence and therapeutic index, Br. J. Clin. Pharmacol. 80 (3) (2015) 372–380.
7. R. Nave, W. Meyer, R. Fuhst, et al., Formation of fatty acid conjugates of ciclesonide active metabolite in the rat lung after 4-week inhalation of ciclesonide, Pulm. Pharmacol. Ther. 18 (6) (2005) 390–396.
8. S.R.J. Maxwell, Pharmacodynamics for the prescriber, Medicine 44 (7) (2016) 401–406.
9. G. Hochhaus, Pharmacokinetic and pharmacodynamic properties important for inhaled corticosteroids, Ann. Allergy Asthma Immunol. 98 (2) (2007) S7–S15.
10. P. Rogliani, L. Calzetta, A. Coppola, et al., Optimizing drug delivery in COPD: the role of inhaler devices, Respir. Med. 124 (2017) 6–14.
11. I.M. Adcock, K.F. Chung, Glucocorticosteroids, in: N.F. Adkinson, B.S. Bochner, A.W. Burks, et al. (Eds.), Allergy Principles and Practice, eighth ed., Elsevier, Philadelphia, 2014, pp. 1578–1601.
12. D.M. Williams, Clinical pharmacology of corticosteroids, Respir. Care 63 (6) (2018) 655–670. [13] P.J. Barnes, Glucocorticosteroids, Handb. Exp. Pharmacol. 237 (2017) 93–115.
13. S. Ramamoorthy, J.A. Cidlowski, Corticosteroids: mechanisms of action in health and disease, Rheum. Dis. Clin. N. Am. 42 (1) (2016) 15–31.
14. P.J. Barnes, Anti-inflammatory actions of glucocorticoids: molecular mechanisms, Clin. Sci. (Lond). 94 (6) (1998) 557–572.
15. P.J. Barnes, Anti-inflammatory actions of glucocorticoids: molecular mechanisms, Clin. Sci. (Lond). 94 (6) (1998) 557–572.
16. H. Schäcke, A. Schottelius, W.D. Döcke, et al., Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects, Proc. Natl. Acad. Sci. U. S. A. 101 (1) (2004) 227–232.
17. H. Derendorf, R. Nave, A. Drollmann, et al., Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma, Eur. Respir. J. 28 (2006) 1042–1050.
18. S. Pedersen, P. O’Byme, A comparison of the efficacy and safety of inhaled corticosteroids in asthma, Allergy 52 (Suppl 39) (1997) 1–34.
19. R. Brattsand, Drug development of inhaled steroids. A, in: R.P. Schleimer, P.M. O’Byrne, S.J. Szefler, et al. (Eds.), Inhaled Steroids in Asthma – Optimizing the Effects in the Airways, Marcel Dekker, Inc, New York, 2002, pp. 3–32.
20. G.A. Rossi, F. Cerasoli, M. Cazzola, Safety of inhaled corticosteroids: room for improvement, Pulm. Pharmacol. Ther. 20 (1) (2007) 23–35.
21. S.A. Cryan, N. Sivadas, L. Garcia-Contreras, In vivo animal models for drug delivery across the lung mucosal barrier, Adv. Drug Deliv. Rev. 59 (11) (2007) 1133–1151.
22. Miller-Larsson A, Mattsson H, Hjertberg E, et al. Reversible fatty acid conjugation of budesonide: novel mechanism for prolonged retention of topically applied steroid in airway tissue. Drug Metab Dispos. 1998;26:623-630.
23. Nave R, Meyer W, Fuhst R, et al. Formation of fatty acid conjugates of ciclesonide active metabolite in the rat lung after 4-week inhalation of ciclesonide. Pulm Pharmacol Ther. 2005;18:390-396.
24. Edsbacker S, Brattsand R. Budesonide fatty-acid esterification: a novel mechanism prolonging binding to airway tissue. Review of available data. Ann Allergy Asthma Immunol. 2002;88:609-616.
25. Buhl R. Local oropharyngeal side effects of inhaled corticosteroids in patients with asthma. Allergy. 2006;61:518-526.
26. Richter K, Kanniess F, Biberger C, et al. Comparison of the oropharyngeal deposition of inhaled ciclesonide and fluticasone propionate in patients with asthma. J Clin Pharmacol. 2005;45: 146-152.
27. Nave R, Zech K, Bethke TD. Lower oropharyngeal deposition of inhaled ciclesonide via hydrofluoroalkane metered-dose inhaler compared with budesonide via chlorofluorocarbon metereddose inhaler in healthy subjects. Eur J Clin Pharmacol. 2005; 61:203-208.