Volume : 09, Issue : 10, October – 2022

Title:

55.COMORBIDITIES AND THEIR INTERACTIONS IN DIABETES AND ATHEROSCLEROTIC DYSLIPIDEMIA (COVID-19)

Authors :

Dr. Humna Ali, Dr. Asnia Saeed, Dr. Syeda Hoor-ul-aan Bokhari

Abstract :

In addition to high blood pressure and smoking, the onset of coronary artery disease is strongly linked to diabetes mellitus. For this population, atherosclerosis is a major killer since it increases the likelihood of developing heart disease, stroke, and peripheral vascular insufficiency symptoms by a factor of two to four, respectively. Patients with a diagnosis of coronavirus (COVID-19) may fare poorly if they also suffer from co-occurring conditions. In this study, we highlight two such factors and their interactive effects on one another that may have a multiplicative effect on the result of COVID-19. Diabetes and high cholesterol levels may play off of one other in this way. The patients having type 2 diabetes mellitus, the prevalence of dyslipidemia, which is a component of metabolic syndrome, is significantly higher at 75%. Patients diagnosed with type 2 diabetes mellitus who have variations in the quantitative, qualitative, and kinetic components of dyslipidemia are exposed to the risk of emerging insulin resistance and dying from cardiovascular disease. There is a “hidden” atherogenic lipid profile that can be found when there are high amounts of intermediate-density lipoproteins, small and dense low-density lipoproteins, and small, dense and dysfunctional high-density lipoproteins. This profile can hide otherwise normal cholesterol levels. HMGCoAredutase inhibitors, a class of lipid-reducing medications, have the largest body of evidence showing a decrease in risk associated with LDL-c lowering (statins). Traditional drugs like nicotinic acid, fibrates like gemfibrozil, fen fibrate, and Pema- fibrate, and omega-3 fatty acids like docosahexaenoic acid and eicosapentaenoic acid are all feasible alternatives. The first step in treating diabetic dyslipidemia should be a change in lifestyle, including the creation of a healthy diet, the implementation of a regular exercise routine, and the management of the typical anxiety experienced by many patients. It goes without saying that proper blood glucose control should exist before lipid medication is started.
Keywords: covid, diabetes, Apolipoprotein B

Cite This Article:

Please cite this article in press Humna Ali et al, Comorbidities And Their Interactions In Diabetes And Atherosclerotic Dyslipidemia (Covid-19)., Indo Am. J. P. Sci, 2022; 09(10).

References:

1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, et al. (2020) Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: a systematic review and meta-analysis. Int J Infect Dis 94: 91-95.
2. Emami A, Javanmardi F, Pirbonyeh N, Akbari A (2020) Prevalence of underlying diseases in hospitalized patients with COVID-19: a system- atic review and meta-analysis. Arch Acad Emerg Med 8: e35.
3. Hussain A, Bhowmik B, do Vale Moreira NC (2020) COVID-19 and dia- betes: knowledge in progress. Diabetes Res Clin Pract 162: 108142.
4. Wang B, Li R, Lu Z, Huang Y (2020) Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY) 12: 6049-6057.
5. Pyörälä K, Laakso M, Uusitupa M (1987) Diabetes and atherosclero- sis: an epidemiologic view. Diabetes Metab Rev 3: 463-524.
6. Durrington PN (1990) Secondary hiperlipidaemia. Br Med Bull 46: 1005-1024.
7. Stamler J, Vaccaro O, Neaton JD, Wentworth D (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16: 434-444.
8. Rosengren A, Welin L, Tsipogianni A, Wilhelmsen L (1989) Impact of cardiovascular risk factors on coronary heart disease and mortality among middle aged diabetic men. a general population study. BMJ 299: 1127-1131.
9. Howard BV (1987) Lipoprotein metabolism in diabetes mellitus. J Lipid Res 28: 613-628.
10. Abbate SL, Brunzell JD (1990) Pathophysiology of hyperlipidemia in diabetes mellitus. J Cardiovasc Pharmacol 16: S1-S7.
11. Chen YD, Swami S, Skowronski R, Coulston A, Reaven GM (1993) Differences in postprandial lipemia between patients with normal glu- cose tolerance and noninsulin-dependent diabetes mellitus. J Clin En- docrinol Metab 76: 172-177.
12. Patsch JR, Miesenböck G, Hopferwieser T, Mühlberger V, Knapp E, et al. (1992) Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 12: 1336-1345.
13. Harris MI (1991) Hypercholesterolemia in diabetes and glucose intol- erance in the U.S. population. Diabetes Care 14: 366-374.
14. Feingold KR, Grunfeld C, Pang M, Doerrler W, Krauss RM (1992) LDL subclass phenotypes and triglyceride metabolism in non-insulin- dependent diabetes. Artherioscler Thromb 12: 1496-1502.
15. DeFronzo RA, Ferrannini E, Koivisto V (1983) New concepts in the pathogenesis and treatment of noninsulin-dependent diabetes melli- tus. Am J Med 74: 52-81.
16. Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue.Prog Lipid Res 48: 275-297.
17. Bagdade JD, Ritter MC, Subbaiah PV (1991) Accelerated cholesteryl ester transfer in patients with insulin-dependent diabetes mellitus. Eur J Clin Invest 21: 161-167.
18. Bhatnagar D, Durrington PN, Kumar S, Mackness MI, Boulton AJ (1996) Plasma lipoprotein composition and cholesteryl ester transfer from high density lipoproteins to very low density and low density li- poproteins in patients with non-insulin-dependent diabetes mellitus. Diabet Med 13: 139-144.
19. Krauss RM (2004) Lipids and lipoproteins in patients with type 2 diabe- tes. Diabetes Care 27: 1496-1504.
20. Sibley SD, Hokanson JE, Steffes MW, Purnell JQ, Marcovina SM, et al.(1999) Increased small dense LDL and intermediate-density lipo- protein with albuminuria in type 1 diabetes. Diabetes Care 22: 1165- 1170.
21. Schonfeld G, Birge C, Miller JP, Kessler G, Santiago J (1974) Apo- lipoprotein B levels and altered lipoprotein composition in diabetes. Diabetes 23: 827-834.
22. Younis N, Sharma R, Soran H, Charlton-Menys V, Elseweidy M, et al. (2008) Glycation as an atherogenic modification of LDL. Curr Opin Lipidol 19: 378-384.
23. Jenkins AJ, Best JD, Klein RL, Lyons TJ (2004) Lipoproteins, glycox- idation and diabetic angiopathy. Diabetes Metab Res Rev 20: 349- 368.
24. Witztum JL, Mahoney EM, Branks MJ, Fisher M, Elam R, et al. (1982) Nonenzymatic glucosylation of low-density lipoprotein alters its bio- logic activity. Diabetes 31: 283-291.
25. Abbasi A, Corpeleijn E, Gansevoort RT, Gans RO, Hillege HL, et al. (2013) Role of HDL cholesterol and estimates of HDL particle compo- sition in future development of type 2 diabetes in the general popula- tion: the PREVEND study. J Clin Endocrinol Metab 98: E1352-E1359.
26. Soran H, France MW, Kwok S, Dissanayake S, Charlton-Menys V, et al. (2011) Apolipoprotein B100 is a better treatment target than calcu- lated LDL and non-HDL cholesterol in statin-treated patients. Ann Clin Biochem 48: 566-571.
27. Zhang Y, Jenkins AJ, Basu A, Stoner JA, Lopes-Virella MF, et al. (2016) Associations between intensive diabetes therapy and NMR- determined lipoprotein subclass profiles in type 1 diabetes. J Lipid Res 57: 310-317.
28. Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, et al. (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302: 1993-2000.
29. Maahs DM, Ogden LG, Dabelea D, Snell-Bergeon JK, Daniels SR, et al. (2010) Association of glycaemia with lipids in adults with type 1 diabetes: modification by dyslipidaemia medication. Diabetologia 53: 2518-2525.
30. Mihailescu DV, Vora A, Mazzone T (2011) Lipid effects of endocrine medications. Curr Atheroscler Rep 13: 88-94.
31. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE (1995) Meta- bolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 333: 550-554.
32. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, et al. (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabe- tes. N Engl J Med 373: 2117-2128.
33. Wulffelé MG, Kooy A, de Zeeuw D, Stehouwer CDA, Gansevoort RT (2004) The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med 256: 1-14.
34. Buse JB, Tan MH, Prince MJ, Erickson PP (2004) The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. Diabetes Obes Metab March 6: 133-156.
35. Monami M, Vitale V, Ambrosio ML, Bartoli N, Toffanello G, et al. (2012) Effects on lipid profile of dipeptidyl peptidase 4 inhibitors, pioglitazo- ne, acarbose, and sulfonylureas: meta-analysis of placebo-controlled trials. Adv Ther 29: 736-746.
36. Araki T, Emoto M, Konishi T, Ikuno Y, Lee E, et al. (2009) Glimepiride increases high-density lipoprotein cholesterol via increasing adiponec- tin levels in type 2 diabetes mellitus. Metabolism 58: 143-148.
37. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Bene- detti M, et al. (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the Proactive Study (Prospective Pioglitazone Clinical Trial In Macrovascular Events): a randomised controlled trial. Lancet 366: 1279-1289.
38. Azimova K, Juan ZS, Mukherjee D (2014) Cardiovascular safety profile of currently available diabetic drugs. Ochsner J 14: 616-632.
39. Siahmansur TJ, Schofield JD, Azmi S, Liu Y, Durrington PN, et al. (2015) Unintended positive and negative effects of drugs on lipopro- teins. Curr Opin Lipidol 26: 325-337.
40. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, et al. (2013) Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 56: 2582-2592.
41. Boland CL, Degeeter M, Nuzum DS, Tzefos M (2013) Evaluating sec- ond-line treatment options for type 2 diabetes: focus on secondary effects of GLP-1 agonists and DPP-4 inhibitors. Ann Pharmacother 47: 490-505.
42. Matikainen N, Mänttäri S, Schweizer A, Ulvestad A, Mills D, et al. (2006) Vildagliptin therapy reduces postprandial intestinal triglyceride- rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 49: 2049-2057.
43. Zinman B, Ahrén B, Neubacher D, Patel S, Woerle HJ, et al. (2016) Efficacy and cardiovascular safety of linagliptin as an add-on to insulin in type 2 diabetes: a pooled comprehensive post hoc analysis. Can J Diabetes 40: 50-57.
44. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF (2010) Effect of da- pagliflozin in patients with type 2 diabetes who have inadequate gly- caemic control with metformin: a randomised, double-blind, placebo- controlled trial. Lancet 375: 2223-2233.
45. Ptaszynska A, Hardy E, Johnsson E, Parikh S, List J (2013) Effects of dapagliflozin on cardiovascular risk factors. Postgrad Med 125: 181- 189.
46. Forst T, Guthrie R, Goldenberg R, Yee J, Vijapurkar U, et al. (2014) Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab 16: 467-477.
47. Roden M, Weng J, Eilbracht J, Delafont B, Kim G, et al. (2013) Em- pagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo- controlled, phase 3 trial. Lancet Diabetes Endocrinol 1: 208-219.
48. Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, et al. (2010) Exenatide suppresses postprandial elevations in lipids and lipopro- teins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis 212: 217-222.
49. Vilsbøll T, Zdravkovic M, Le-Thi T, Krarup T, Schmitz O, et al. (2007) Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabe- tes. Diabetes Care 30: 1608-1610.
50. Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, et al. (2013) Liraglutide suppresses postprandial triglyceride and apoli- poprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab 15: 1040-1048.
51. Taskinen MR (2003) Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46: 733-749.
52. Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360: 7-22.
53. Heart Protection Study Collaborative Group, Collins R, Armitage J, Parish S, Sleight P, et al. (2004) Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 peo- ple with cerebrovascular disease or other high-risk conditions. Lancet 363: 757-767.
54. Soran H, Schofield JD, Durrington PN (2015) Cholesterol, not just cardiovascular risk, is important in deciding who should receive statin treatment. Eur Heart J 36: 2975-2983.
55. Xu H, Barnes GT, Yang Q, Tan G, Yang D, et al. (2003) Chronic inflam- mation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 1821-1830.
56. Winocour PH, Durrington PN, Ishola M, Anderson DC, Cohen H (1987) Influence of proteinuria on vascular disease, blood pressure, and lipo- proteins in insulin dependent diabetes mellitus. Br Med J (Clin Res Ed) 294: 1648-1651.
57. Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, et al. (2005) The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A 102: 8132-8137.
58. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, et al. (2015) Ezetimibe added to statin therapy after acute coronary syn- dromes. N Engl J Med 372: 2387-2397.
59. Fonseca VA, Handelsman Y, Staels B (2010) Colesevelam lowers glu- cose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes Metab 12: 384-392.
60. Garg A, Grundy SM (1994) Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med 121: 416-422.
61. Chapman MJ, Redfern JS, McGovern ME, Giral P (2010) Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce car- diovascular risk. Pharmacol Ther 126: 314-345.
62. Shapiro MD, Fazio S (2016) From lipids to inflammation: new ap- proaches to reducing atherosclerotic risk. Circ Res 118: 732-749.
63. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, et al. (1998) Mechanism of action of fibrates on lipid and lipoprotein metabo- lism. Circulation 98: 2088-2093.
64. Rosenson RS (2004) Current overview of statin-induced myopathy. Am J Med 116: 408-416.
65. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, et al. (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veter- ans affairs high-density lipoprotein cholesterol intervention trial study group. N Engl J Med 341: 410-418.
66. Keech A, Simes RJ, Barter P, Best J, Scott R, et al. (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366: 1849-1861.
67. ACCORD Study Group, Ginsberg HN, Elam MB, Lovato LC, Crouse JR, et al. (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362: 1563-1574.
68. Jun M, Foote C, Lv J, Neal B, Patel A, et al. (2010) Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis Lancet 375: 1875-1884.
69. Fruchart JC (2013) Selective peroxisome proliferator-activated recep- tor a modulators (SPPARM�): the nnneex�t generation of ppeerroox�isome pprroo– liferator-activated receptor � -agonists. Cardiovasc Diabetol 12: 82.
70. Araki E, Yamashita S, Arai H, Yokote K, Satoh J, et al. (2018) Effects of pemafibrate, a novel selective PPARA modulator, on lipid and glucose metabolism in patients with type 2 diabetes and hypertriglyceridemia: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabe- tes Care 41: 538-546.
71. Pradhan AD, Paynter NP, Everett BM, Glynn RJ, Amarenco P, et al. (2018) Rationale and design of the pemafibrate to reduce cardiovas- cular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) study. Am Heart J 206: 80-93.
72. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, et al. (2006) Effects of omega-3 fatty acids on serum markers of cardiovascular dis- ease risk: a systematic review. Atherosclerosis 189: 19-30.
73. Harris WS (1997) N-3 fatty acids and serum lipoproteins: human stud- ies. Am J Clin Nutr 65: 1645S-1654S.
74. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, et al. (2018) Omega‐3 fatty acids for the primary and secondary pre- vention of cardiovascular disease. Cochrane Database Syst Rev 7: CD003177.
75. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, et al. (2019) Cardiovascular risk reduction with icosapent ethyl for hypertriglyceri- demia. N Engl J Med 380: 11-22.
76. American Diabetes Association (2020) Cardiovascular disease and risk management: standards of medical care in diabetes – 2020. Dia- betes Care 43: S111-S134.
77. Seidah NG, Awan Z, Chrétien M, Mbikay M (2014) PCSK9: a key mod- ulator of cardiovascular health. Circ Res 114: 1022-1036.
78. Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, et al. (2017) Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespeci- fied analysis of the fourier randomised controlled trial. Lancet Diabetes Endocrinol 5: 941-950.
79. Ray KK, Colhoun H, Szarek M, Baccara-Dinet M, Bhatt DL, et al. (2018) Alirocumab and cardiovascular outcomes in patients with Acute Coronary Syndrome (ACS) and diabetes – Prespecified analyses of ODYSSEY outcomes. Diabetes 67: 6-LB.
80. Role of cardiovascular risk factors in prevention and treatment of mac- rovascular disease in diabetes. American Diabetes Association (1989) Diabetes Care 12: 573-579.
81. Grundy SM, Bilheimer D, Chait A, Clark LT, Denke M, et al. (1993) Summary of the Second Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treat- ment of High Blood Cholesterol in Adults (Adult Treatment Panel II). JAMA 269: 3015-3023.
82. Riccardi G, Rivellese A, Pacioni D, Genovese S, Mastranzo P, et al. (1984) Separate influence of dietary carbohydrate and fibre on the metabolic control in diabetes. Diabetologia 26: 116-121.
83. Schneider SH, Vitug A, Ruderman N (1986) Atherosclerosis and physi- cal activity. Diabetes Metab Rev 1: 513-553.
84. Lampman RM, Schteingart DE, Santinga JT, Savage PJ, Hydrick CR, et al. (1987) The influence of physical training on glucose tolerance, in- sulin sensitivity, and lipid and lipoprotein concentration in middle-aged hypertriglyceridaemic, carbohydrate intolerant men. Diabetologia 30: 380-385.
85. Stern MP, Mitchell BD, Haffner SM, Hazuda HP (1992) Does glycemic control of type II diabetes suffice to control diabetic dyslipidemia? A Community Perspective. Diabetes Care 15: 638-644.
86. Consenso Brasileiro sobre Dislipidemias: Detecção, Avaliação e Tratamento. Sociedade Brasileira de Cardiologia (1996) Arq Bras Car- diol 67: 113-128.