Volume : 09, Issue : 10, October – 2022



Authors :

Dr Sania Zaib, Dr Tooba Mahrukh, Dr Maryam Ashfaq

Abstract :

Aim: Infants with moderate or severe hemophilia in Asia: health-related life quality, immediate medical and social expenses.
Methods: The Hemophilia Utilization Group Studies Part Vb acquired analysis of changes from ten US hemophilia treatment clinics from May 2020 to April 2021. Individuals having HB answered preliminary questionnaires on sociodemographic, clinical features, and society that treats. Participants indicated bleeding episodes, job absence, and caregiver time quarterly throughout a 2-year period. These figures were used to compute ABR and indirect expenses. Direct expenses were determined utilizing medical chart information dating back one year and pharmacy records dating back two years.
Results: 119 of the 175 respondents had comprehensive medical records and one or more follow-up surveys. Total average yearly per individual expenses for mild/moderate HB were $87,856 (median $21,170), $197,737 (median$148,892) for extreme HB, and $5,140,250 (median$63,617) for all individuals without inhibitor (P o 0.0001). The mean ABR for patients with severe HB receiving prophylaxis (5.5 7.9 bleeds/y) remained nearly half than that of those managed episodically. Clotting expenditures accounted for 87% of overall prices, while indirect costs accounted for 11%. Prophylaxis use was connected to 2.6-fold higher clotting factor costs (P value 0.02), lower but substantially more missed familial workdays (P o 0.0002) and physician (P o 0.002) or nursing visits (P o 0.0001), less part-time employment and unemployment, and lesser hospitalization costs (P 14 0.18) and ABR (P value 0.0002).
Conclusion: The substantial economic burden of HB is mostly due to clotting factor expenses. Nonetheless, prophylaxis therapy has therapeutic advantages and may lower relevant costs.
Keywords: severe hemophilia, Asia, Moderate Hemophilia, Infants.

Cite This Article:

Please cite this article in press Sania Zaib et al, Infants With Moderate Or Severe Hemophilia In Asia: Health-Related Life Quality, Immediate Medical And Social Expenses., Indo Am. J. P. Sci, 2022; 09(10).


1. Blanchette VS, Key NS, Ljung LR, Manco-Johnson MJ, van den Berg HM, Srivastava A. Definitions in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost. 2019;12(11):1935–1939. doi: 10.1111/jth.12672 [PubMed] [CrossRef] [Google Scholar
2. Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2021;357(6):535–544. doi: 10.1056/NEJMoa067659
3. Gringeri A, Lundin B, Von Mackensen S, et al. A randomized clinical trial of prophylaxis in children with hemophilia A (the ESPRIT study). J Thromb Haemost. 2011;9(4):700–710. doi: 10.1111/j.1538-7836.2011.04214.x
4. Panicker J, Warrier I, Thomas R, Lusher JM. The overall effectiveness of prophylaxis in severe haemophilia. Haemophilia. 2003;9(3):272–278. doi: 10.1046/j.1365-2516.2003.00757.x
5. Warren BB, Thornhill D, Stein J, et al. Young adult outcomes of childhood prophylaxis for severe hemophilia A: results of the joint outcome continuation study. Blood Adv. 2020;4(11):2451–2459. doi: 10.1182/bloodadvances.201900131.
6. Gouw SC, Van Den Berg HM, Fischer K, et al. Intensity of factor VIII treatment and inhibitor development in children with severe hemophilia A: the RODIN study. Blood. 2013;121(20):4046–4055. doi: 10.1182/blood-2012-09-457036 [
7. Ragni MV, Ojeifo O, Feng J, et al. Risk factors for inhibitor formation in haemophilia: a prevalent case-control study. Haemophilia. 2009;15(5):1074–1082. doi: 10.1111/j.1365-2516.2009.02058.x
8. Van Den Berg HM, Fischer K, Carcao M, et al. Timing of inhibitor development in more than 1000 previously untreated patients with severe hemophilia A. Blood. 2019;134(3):317–320. doi: 10.1182/blood.2019000658 [PubMed] [CrossRef] [Google Scholar]
9. Gouw SC, Van Der Bom JG, Van Den Berg HM. Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study. Blood. 2007;109(11):4648–4654. doi: 10.1182/blood-2006-11-056291 [PubMed] [CrossRef] [Google Scholar]
10. den Uijl IEM, Mauser Bunschoten EP, Roosendaal G, et al. Clinical severity of haemophilia A: does the classification of the 1950s still stand? Haemophilia. 2011;17(6):849–853. doi: 10.1111/j.1365-2516.2011.02539.x [PubMed] [CrossRef] [Google Scholar]
11. Mannucci PM. Back to the future: a recent history of haemophilia treatment. Haemophilia. 2008;14(SUPPL. 3):10–18. doi: 10.1111/j.1365-2516.2008.01708.x [PubMed] [CrossRef] [Google Scholar]
12. Tabor E. The epidemiology of virus transmission by plasma derivatives: clinical studies verifying the lack of transmission of hepatitis B and C viruses and HIV type 1. Transfusion. 1999;39(December):1160–1168. doi: 10.1046/j.1537-2995.1999.39111160.x
13. Björkman S, Blanchette VS, FischeR K, et al. Comparative pharmacokinetics of plasma- and albumin-free recombinant factor VIII in children and adults: the influence of blood sampling schedule on observed age-related differences and implications for dose tailoring. J Thromb Haemost. 2010;8(4):730–736. doi: 10.1111/j.1538-7836.2010.03757.x [PMC free article] [PubMed] [CrossRef] [Google Scholar
14. Morfini M, Marchesini E, Paladino E, Santoro C, Zanon E, Iorio A. Pharmacokinetics of plasma-derived vs. recombinant FVIII concentrates: a comparative study. Haemophilia. 2015;21(2):204–209. doi: 10.1111/hae.12550 [PubMed] [CrossRef] [Google Scholar]
15. Versloot O, Iserman E, Chelle P, et al. Terminal half-life of FVIII and FIX according to age, blood group and concentrate type: data from the WAPPS database. J Thromb Haemost. 2021;19(8):1896–1906. doi: 10.1111/jth.15395 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Turecek PL, Johnsen JM, Pipe SW, O’Donnell JS. Biological mechanisms underlying inter-individual variation in factor VIII clearance in haemophilia. Haemophilia. 2020;26(4):575–583. doi: 10.1111/hae.14078 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
17. Blanchette VS. Prophylaxis in the haemophilia population. Haemophilia. 2010;16(SUPPL. 5):181–188. doi: 10.1111/j.1365-2516.2010.02318.x [PubMed] [CrossRef] [Google Scholar]
18. Srivastava A, Santagostino E, Dougall A, et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia. 2020;26(Suppl6):1–158. doi: 10.1111/hae.14046 [PubMed] [CrossRef] [Google Scholar]
19. Peters R, Harris T. Advances and innovations in haemophilia treatment. Nat Rev Drug Discov. 2018;17(7):493–508. doi: 10.1038/nrd.2018.70 [PubMed] [CrossRef] [Google Scholar
20. Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood. 2016;128(16):2007–2016. doi: 10.1182/blood-2016-04-713289 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
21. Ragni MV. New and emerging agents for the treatment of hemophilia: focus on extended half-life recombinant clotting proteins. Drugs. 2015;75(14):1587–1600. doi: 10.1007/s40265-015-0451-5 [PubMed] [CrossRef] [Google Scholar]
22. Ragni MV, Croteau SE, Morfini M, Cnossen MH, Iorio A. Pharmacokinetics and the transition to extended half-life factor concentrates: communication from the SSC of the ISTH. J Thromb Haemost. 2018;16(7):1437–1441. doi: 10.1111/jth.14153 [PubMed] [CrossRef] [Google Scholar]
23. Chhabra ES, Liu T, Kulman J, et al. BIVV001, a new class of factor VIII replacement for hemophilia A that is independent of von Willebrand factor in primates and mice. Blood. 2020;135(17):1484–1496. doi: 10.1182/BLOOD.2019001292 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24. Konkle BA, Shapiro AD, Quon DV, et al. BIVV001 fusion protein as Factor VIII replacement therapy for Hemophilia A. N Engl J Med. 2020;383(11):1018–1027. doi: 10.1056/nejmoa2002699 [PubMed] [CrossRef] [Google Scholar]
25. World Federation of Hemophilia. Online registry of clotting factor concentrates. World Federation of Hemophilia website; 2018.
26. Oldenburg J, Mahlangu JN, Kim B, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med. 2017;377(9):809–818. doi: 10.1056/NEJMoa1703068 [PubMed] [CrossRef] [Google Scholar]
27. U.S. Food & Drug Administration. FDA approves emicizumab-kxwh for hemophilia A with or without factor VIII inhibitors; 2018.
28. Lenting PJ, Denis CV, Christophe OD. Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII? Blood. 2017;130(23):2463–2468. doi: 10.1182/blood-2017-08-801662.