Volume : 10, Issue : 01, January – 2023

Title:

34.CURRENT CHALLENGES IN VACCINE DEVELOPMENT

Authors :

Kiran M. Raundale , Sailesh G.Jawarkar

Abstract :

One of the most successful therapeutic strategies to prevent or control various diseases is by “vaccination” protocol The terms “vaccine” and “vaccinology” came into use soon after Edward Jenner discovered the smallpox vaccine. Jenner called the smallpox vaccine “variola vaccinae.” For his contribution, Jenner is often referred to as the “Father of Vaccinology” (though this epithet is sometimes also used for Louis Pasteur). The word “vaccine” originated from vacca, a Latin term for the cow. The credit for the first use of the term “vaccine” goes to Swiss physician Louis Odier (1748-1817), and the terms “vaccination” and “to vaccinate” were first used by Richard Dunning (1710- 1797)
A vaccine is a biological preparation that can be used to safely induce an immune response that confers protection against infection and/or disease on subsequent exposure to a pathogen.

Cite This Article:

Please cite this article in press Kiran M.Raundale et al, Current Challenges In Vaccine Development., Indo Am. J. P. Sci, 2023; 10(01).

Number of Downloads : 10

References:

1. Kaufmann, S. Is the development of a new tuberculosis vaccine possible? Nature Med. 6, 955–960 (2000).
2. Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology. 2015;479– 480:379–92. https://doi.org/10.1016/j.virol.2015.03.032
3. Comparative efficacy of three mumps vaccines during disease outbreak in eastern Switzerland: cohort study – Schlegel et al. 319 (7206): 352 – bmj.com”. Bmj.bmjjournals.com. Retrieved 2013-04-26.
4. Jacobs BL, Langland JO, Kibler KV, Denzler KL, White SD, Holechek SA et al (2009) Vaccinia virus vaccines: past, present and future. Antiviral Res 84:1–13
5. Kumru OS, Joshi SB, Smith DE, Middaugh CR, Prusik T, Volkin DB. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals. 2014;42(5):237–59. https://doi.org/10.1016/j.biologicals.2014.05.007.
6. Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018;50(2):110–20.
7. Plotkin, S. A. Updates on immunologic correlates of vaccine-induced protection. Vaccine 38, 2250– 2257 (2020).
8. Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014;6(6):708– 20. https://doi.org/10.1002/emmm.201403876.
9. N. R. Hegde, D. Kumar, P. P. Rao, P. K. Kumari, Y. Kaushik, R. Ravikrishnan, S. D. Prasad and K. M. Ella, Vaccine, 2014, 32, 3636.
10. Hansson M, Nygren PA, Stahl S. Design and production of recombinant subunit vaccines. Biotechnol Appl Biochem. 2000;32(2):95–107. https://doi.org/10.1042/ba20000034.
11. Orenstein WA, Papania MJ, Wharton ME (2004). “Measles elimination in the United States”. J Infect Dis 189 (Suppl 1): S1–3. doi:10.1086/377693. PMID 15106120.
12. Eldred, B. E., Dean, A. J., McGuire, T. M. & Nash, A. L. Vaccine components and constituents: responding to consumer concerns. Med. J. Aust. 184, 170–175 (2006)
13. Pollard AJ, Perrett KP, Beverley PC. Science and society: Maintaining protection against invasive bacteria with protein–polysaccharide conjugate vaccines. Nat Rev Immunol 2009;9:213-20
14. Siegrist CA. Immunological requirements for vaccines to be used in early life. In: Bloom BR, Paul- Henri, editors. The vaccine book USA. California Elsevier Science; 2003.
15. Seder RA, Mascola JR. A basic immunology of vaccine development. In: Bloom BR, Paul-Henri, editors. The vaccine book USA. California Elsevier Science; 2003.
16. Draper, S. J. & Heeney, J. L. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol. 8, 62–73 (2010)
17. Jackson, D. A., Symons, R. H. & Berg, P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl Acad. Sci. USA 69, 2904–2909 (1972).
18. . Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 389, 505–518 (2017).
19. Robert-Guroff, M. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 18, 546–556 (2007)
20. Hassan, A. O. et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 36, 109452 (2021).
21. Xu, F. et al. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. Emerg. Microbes Infect. 11, 438–441 (2022)
22. Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct Gene Transfer into Mouse Muscle in Vivo. Science 1990, 247, 1465–1468. [CrossRef] [PubMed]
23. Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; DeWitt, C.M.; Friedman, A. Heterologous Protection against Influenza by Injection of DNA Encoding a Viral Protein. Science 1993, 259, 1745–1749. [CrossRef]
24. Donnelly, J.J.; Wahren, B.; Liu, M.A. DNA Vaccines: Progress and Challenges. J. Immunol. 2005, 175, 633–639. [CrossRef]
25. Hui, D.S.C.; Chan, P.K.S. Severe Acute Respiratory Syndrome and Coronavirus. Infect. Dis. Clin. North Am. 2010, 24, 619–638. [CrossRef]
26. Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and Pandemic Potential of Swine-Origin H1N1 Influenza Virus. Nature 2009, 459, 931–939. [CrossRef] [PubMed]
27. Gire, S.K.; Goba, A.; Andersen, K.G.; Sealfon, R.S.G.; Park, D.J.; Kanneh, L.; Jalloh, S.; Momoh, M.; Fullah, M.; Dudas, G.; et al. Genomic Surveillance Elucidates Ebola Virus Origin and Transmission during the 2014 Outbreak. Science 2014, 345, 1369–1372. [CrossRef]
28. Liu, Y.; Liu, J.; Du, S.; Shan, C.; Nie, K.; Zhang, R.; Li, X.-F.; Zhang, R.; Wang, T.; Qin, C.-F.; et al. Evolutionary Enhancement of Zika Virus Infectivity in Aedes Aegypti Mosquitoes. Nature 2017, 545, 482–486. [CrossRef]
29. Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The Proximal Origin of SARS- CoV-2. Nat. Med. 2020, 26, 450–452. [CrossRef]
30. Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [CrossRef] [PubMed]
31. Mathieu M. Clinical testing of new drugs. In: New Drug Development: A Regulatory Overview. Cambridge, MA: Parexel International; 1990:83-104.
32. Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nat Rev Microbiol 2011;9:889- 93
33. Di Pasquale, A., Bonanni, P., Garcon, N., et al., 2016. Vaccine safety evaluation: Practical aspects in assessing benefits and risks. Vaccine 34, 6672–6680
34. Mathieu M. Clinical testing of new drugs. In: New Drug Development: A Regulatory Overview. Cambridge, MA: Parexel International; 1990:83-104.
35. Dimasi, J.A., Florez, M.I., Stergiopoulos, S., et al., 2020. Development times and approval success rates for drugs to treat infectious diseases. Clinical Pharmacology & Therapeutics 107, 324–332.
36. Goetz KB, Pfleiderer M, Schneider CK. First-in-human clinical trials with vaccines: what regulators want. Nat Biotechnol 2010;28:910-6.
37. Vaccine development, testing, and regulation [Internet]. Philadelphia: The College of Physicians of Philadelphia; 2014 [cited 2014 Nov 1]. Available from: http://www.historyofvaccines.org/content/articles/vaccine-developmenttesting-and-regulation
38. Different types of vaccines [Internet]. Philadelphia: The College of Physicians of Philadelphia; 2014 [cited 2014 Nov 1]. Available from: http://www.historyofvaccines.org/content/articles/different-types- vaccines.
39. World Health Organization. Guidelines on clinical evaluation of vaccines: regulatory expectations [Internet]. Geneva: World Health Organization; 2004 [cited 2014 Nov 2]. Available from: http://www.who.int/biologicals/publications/trs/areas/vaccines/clinical_evaluation/en/.
40. Clin Exp Vaccine Res 2015;4:46-53 http://dx.doi.org/10.7774/cevr.2015.4.1.46 pISSN 2287-3651 • eISSN 2287-366X
41. Committee for Human Medicinal Products (CHMP) of European Medicines Agency (EMA). Note for guidance on the clinical evaluation of vaccines. EMA/CHMP/VWP/ 164653/2005. London: European Medicines Agency; 2005
42. U.S. Food and Drug Administration. Vaccine adverse events [Internet]. Silver Spring: U.S. Food and Drug Administration; 2014 [cited 2014 Nov 2]. Available from: http://www. fda.gov/BiologicsBloodVaccines/SafetyAvailability/ReportaProblem/VaccineAdverseEvents/.
43. Edwards KM, Decker MD. Pertussis vaccine. In: Plotkin SA, Orenstein WA, Offitt P, editors. Vaccines. 5th ed. USA: Saunders, PA; 2008. p. 471-528.
44. Centers for Disease Control and Prevention. Recommended immunization schedules for persons aged 0–18 years – United States, 2010. MMWR Morb Mortal Wkly Rep 2010;58(51 & 52):1–4.
45. Woodin KA, Rodewald LE, Humiston SG, Carges MS, Schaffer SJ, Szilagyi PG. Physician and parent opinions. Are children becoming pincushions from immunizations? Arch Pediatr Adolesc Med 1995;149(8 (8)):845–9. [PubMed: 7633536]
46. Melman ST, Chawla T, Kaplan JM, Anbar RD. Multiple immunizations. Ouch! Arch Fam Med 1994;3(7 (7)):615–8. [PubMed: 7921298]
47. Happe LE, Lunacsek OE, Marshall GS, Lewis T, Spencer S. Combination vaccine use and vaccination quality in a managed care population. Am J Manag Care 2007;13(9(9)):506–12. [PubMed: 17803364]
48. Marshall GS, Happe LE, Lunacsek OE, Szymanski MD, Woods CR, Zahn M, et al. . Use of combination vaccines is associated with improved coverage rates. Pediatr Infect Dis J 2007;26(6 (6)):496–500. [PubMed: 17529866]
49. Marshall GS, Happe LE, Lunacsek OE, Szymanski MD, Woods CR, Zahn M, et al. Use of combination vaccines is associated with improved coverage rates. Pediatr Infect Dis J 2007;26:496-500.
50. Kalies H, Grote V, Verstraeten T, Hessel L, Schmitt HJ, von Kries R. The use of combination vaccines has improved timeliness of vaccination in children. Pediatr Infect Dis J 2006;25:507-12.
51. Weston WM, Klein NP. Kinrix: A new combination DTaPIPV vaccine for children aged 46 years. Expert Rev Vaccines 2008;7:1309-20
52. Bogaerts H. The future of childhood immunizations: Examining the European experience. Am J Manag Care 2003;9:S30-6.
53. Centers for Disease Control and Prevention. Pediarix vaccine: questions and answers, http:// www.cdc.gov/vaccines/vpd-vac/combo-vaccines/pediarix/faqs-hcp-pediarix.htm; 2009 [accessed 18.01.12].
54. Marin M, Broder KR, Temte JL, Snider DE, Seward JF. Use of combination measles, mumps, rubella, and varicella vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010;59(5 (RR-3)):1–12.
55. Centers for Disease Control and Prevention. Notice to readers: FDA licensure of diphtheria and tetanus toxoids and acellular pertussis adsorbed, hepatitis B (recombinant), and poliovirus vaccine combined, (PEDIARIX™) for use in infants. MMWR Morb Mortal Wkly Rep 2003;52(10):203–4. [PubMed: 12653460]
56. Wakefield AJ, Anthony A, Murch SH, et al. Enterocolitis in children with developmental disorders. Am J Gastroenterol 2000;95:2285–95.
57. Wakefield AJ, Murch SH, Anthony A, et al. Ileal-lymphoidnodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 1998;351:637–41
58. Puschak R, Young M, McKee TV, Plotkin SA. Intranasal vaccination with RA 27–3 attenuated rubella virus. J Pediatr 1971; 79:55–60.
59. Pollard, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-00479-7
60. Murphy, T.V. et al. (2001) Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med. 344, 564–572
61. Pizza, M. et al. (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820.
62. Pollard, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-00479-7
63. Bohlke K, David RL, Marcy SH et al. (2003) Risk of anaphylaxis after vaccination of children and adolescents. Pediatrics 112: 815–20.
64. Lim MS, Elenitoba-Johnson KSJ. The Molecular Pathology of Primary Immunodeficiencies. The Journal of molecular diagnostics : JMD. 2004;6(2):59-83
65. Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al; Infectious Diseases Society of America. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014 Feb;58(3):309-18.
66. Pollard, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-00479-7
67. World Health Organization. Ageing and health. WHO https://www.who.int/news-room/fact- sheets/detail/ ageing-and-health (2018)
68. Immunisation against infectious disease 1996, Eds. Salisbury DM and Begg NT. En: Edward Jenner, Bicentenary Edition
69. Voysey, M., Pollard, A. J., Sadarangani, M. & Fanshawe, T. R. Prevalence and decay of maternal pneumococcal and meningococcal antibodies: a meta-analysis of type-specific decay rates. Vaccine 35, 5850–5857 (2017).
70. World Health Assembly. The Expanded Programme on Immunization: the 1974 resolution by the World Health Assembly. Assign. Child. 69-72, 87–88 (1985)
71. Francis AI, Ghany S, Gilkes T, et al. Postgrad Med J 2022;98:389–394.
72. Covid-19 Tracker. COVID 19 VACCINE TRACKER. https:// covid19.trackvaccines.org/vaccines/. 2021a. Accessed 13 August 2021
73. Funk CD, Laferriere C, Ardakani A. Target product profile analysis of COVID-19 vaccines in phase III clinical trials and beyond: an early 2021 perspective. Viruses. 2021. https://doi. org/10.3390/v13030418.
74. . Creech, C. B., Walker, S. C. & Samuels, R. J. SARS-CoV-2 vaccines. JAMA 325, 1318–1320 (2021)
75. Wang, H. et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182, 713–721.e9 (2020).
76. Gao, Q. et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77–81 (2020)
77. Wang, Y. et al. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc. Natl Acad. Sci. USA 118, e2102775118 (2021).
78. Trimpert, J. et al. Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Rep. 36, 109493 (2021).
79. Gavi. What are viral vector-based vaccines and how could they be used against COVID-19? https://www.gavi.org/vaccines work/what-are-viral-vector-based-vaccines-and-how-could-they-be- used-against-covid-19. 2021b. Accessed 13 August 2021
80. Gavi. What are protein subunit vaccines and how could they be used against COVID-19?. https://www.gavi.org/vaccineswork/ what-are-protein-subunit-vaccines-and-how-could-they-beused- against-covid-19. 2021c. Accessed 13 August 2021.
81. Muthumani, K. et al. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci. Transl. Med. 7, 301ra132 (2015).
82. Brocato, R. L. et al. Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters. NPJ Vaccines. 6, 16 (2021)
83. Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021).
84. Goel, R. R. et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci. Immunol. 6, eabi6950 (2021).
85. Creech, C. B., Walker, S. C. & Samuels, R. J. SARS-CoV-2 vaccines. JAMA 325, 1318–1320 (2021).
86. Hemann EA, Kang SM, Legge KL. Protective CD8 T cell-mediated immunity against influenza A virus infection following influenza virus-like particle vaccination. J Immunol. 2013;191:2486–94. https://doi.org/10.4049/jimmunol.1300954.
87. Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021;892: 173751. https://doi.org/ 10.1016/j.ejphar.2020.173751
88. . Rolda˜o A, Mellado MC, Castilho LR, et al. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9:1149–76. https://doi.org/10.1586/erv.10.115.
89. Karpiński, T. M., Ożarowski, M., Seremak-Mrozikiewicz, A., Wolski, H. & Wlodkowic, D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 11, 1690–1702 (2021).
90. Abdulla ZA, Al-Bashir SM, Al-Salih NS, et al. A summary of the SARS-CoV-2 vaccines and technologies available or under development. Pathogens. 2021. https://doi.org/10.3390/patho gens10070788.
91. Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596:276–80. https://doi.org/10.1038/s41586-021-03777-9
92. . Carrieri V, Madio L, Principe F. Vaccine hesitancy and (fake) news: Quasi-experimental evidence from Italy. Health Econ. 2019;28:1377–82. https://doi.org/10.1002/hec.3937.
93. Rappuoli R, Mandl CW, Black S, De Gregorio E. Vaccines for the twenty-first century society. Nat Rev Immunol 2011; 11:865-72.
94. Halstead SB. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine. (2017) 35:6355–8. doi: 10.1016/j.vaccine.2017.09.089
95. Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013;1285:115-32
96. Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J 2011;13:438-44
97. Rappuoli R. Reverse vaccinology. CurrOpinMicrobiol. (2000) 3:445–50. doi: 10.1016/S1369- 5274(00)00119-3
98. Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: a review. Vaccine. (2017) 36:5350–7. doi: 10.1016/j.vaccine.2017.07.062
99. Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, et al. How the knowledge of interactions between meningococcus and the human immune system has been used to prepare effective Neisseria meningitidis vaccines. J Immunol Res. (2015) 2015:189153. doi: 10.1155/2015/189153
100. Maiden MCJ. The impact of nucleotide sequence analysis on meningococcal vaccine development and assessment. Front Immunol. (2018) 9:3151. doi: 10.3389/fimmu.2018.03151
101. Gavi. There are four types
of COVID-19 vaccines:
here’s how they work. https://www.gavi.org/vaccineswork/there-are-fourtypes-covid-19-vaccines-heres-how-they-work. 2021a. Accessed 13 August 2021.
102. Dai, L. & Gao, G. F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 21, 73– 82 (2021)