Volume : 10, Issue : 03, March – 2023

Title:

11.DESIGN AND CHARECTERIZATION OF ANTITUBERCULAR DRUG LOADED PLGA NANO PARTICLES

Authors :

Gali Hemanth, Nansiri Saha

Abstract :

The aim of the present work was to minimize or prevent the degradation of rifampicin, the antitubercular drug in gastric pH condition to improve the stability and therapeutic efficacy of the drug. The study was carried out by preparing Rifampicin loaded PLGA nanoparticles using ascorbic acid as an antioxidant. Dug loaded nanoparticles were fabricated by a multistep emulsion procedure and evaluations of the prepared nanoparticles were then carried out by various methods. In this study four types of formulations were prepared. Formulation 1 (F1) is rifampicin alone loaded PLGA nanoparticles, formulation II (F2) is rifampicin – ascorbic acid (1:1) loaded PLGA nanoparticles, formulation III (F3) is rifampicin – ascorbic acid (1:2) loaded PLGA nanoparticles and formulation IV (F4) is rifampicin – ascorbic acid (1:3) loaded PLGA nanoparticles. The study concluded that ascorbic acid can minimize the degradation of rifampicin in acidic pH condition and thus improves the stability and bioavailability of rifampicin. The results also demonstrate that there is a statistically significant change in the percentage drug degradation profile when the concentration of ascorbic acid was increased.
Keywords: Design, Charecterization, Nanoparticles, Antitubercular Drug, Plga Nanoparticles

Cite This Article:

Please cite this article in press Gali Hemanth et al, Design And Characterization Of Antitubercular Drug Loaded Plga Nano Particles., Indo Am. J. P. Sci, 2023; 10 (03).

Number of Downloads : 10

References:

1. Gaur M., Misra C., Yadav A.B., Swaroop S., Maolmhuaidh F., Bechelany M., Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials. 2021;14:5978. doi: 10.3390/ma14205978. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
2. Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. [CrossRef] [Google Scholar]
3. Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Barhoum A., El-Maghrabi H.H., Nada A.A., Sayegh S., Roualdes S., Renard A., Iatsunskyi I., Coy E., Bechelany M. Simultaneous hydrogen and oxygen evolution reactions using free-standing nitrogen-doped-carbon–Co/CoOx nanofiber electrodes decorated with palladium nanoparticles. J. Mater. Chem. A. 2021;9:17724–17739. doi: 10.1039/d1ta03704h. [CrossRef] [Google Scholar]
5. Prasad S., Kumar V., Kirubanandam S., Barhoum A. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc.; Amsterdam, The Netherlands: 2018. Engineered nanomaterials: Nanofabrication and surface functionalization; pp. 305–340. [CrossRef] [Google Scholar]
6. Cremers V., Rampelberg G., Barhoum A., Walters P., Claes N., de Oliveira T.M., Van Assche G., Bals S., Dendooven J., Detavernier C. Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition. Surf. Coat. Technol. 2018;349:1032–1041. doi: 10.1016/j.surfcoat.2018.06.048. [CrossRef] [Google Scholar]
7. Hammani S., Moulai-Mostefa N., Samyn P., Bechelany M., Dufresne A., Barhoum A. Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials. 2020;13:926. doi: 10.3390/ma13040926. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Barhoum A., Van Lokeren L., Rahier H., Dufresne A., Van Assche G. Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J. Mater. Sci. 2015;50:7908–7918. doi: 10.1007/s10853-015-9327-z. [CrossRef] [Google Scholar]
9. Rehan M., Barhoum A., Khattab T., Gätjen L., Wilken R. Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag2CO3 and Ag/Ag3PO4 nanoparticles. Cellulose. 2019;26:5437–5453. doi: 10.1007/s10570-019-02497-8. [CrossRef] [Google Scholar]
10. Abdel-Haleem F.M., Salah A., Rizk M.S., Moustafa H., Bechelany M., Barhoum A. Carbon-based Nanosensors for Salicylate Determination in Pharmaceutical Preparations. Electroanalysis. 2019;31:778–789. doi: 10.1002/elan.201800728. [CrossRef] [Google Scholar]
11. Abdel-Haleem F., Mahmoud S., Abdel-Ghani N., El Nashar R., Bechelany M., Barhoum A. Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. Sensors. 2021;21:3150. doi: 10.3390/s21093150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Abdel-Haleem F.M., Gamal E., Rizk M.S., Madbouly A., El Nashar R.M., Anis B., Elnabawy H.M., Khalil A.S.G., Barhoum A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Front. Bioeng. Biotechnol. 2021;9:648704. doi: 10.3389/fbioe.2021.648704. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
13. Parikha Mehrotra, Biosensors and their applications—A review. J. Oral Biol. Craniofac. Res. 2016;6:153–159. doi: 10.1016/j.jobcr.2015.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
14. Rasouli R., Barhoum A., Uludag H. A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Biomater. Sci. 2018;6:1312–1338. doi: 10.1039/C8BM00021B. [PubMed] [CrossRef] [Google Scholar]
15. Rasouli R., Barhoum A., Bechelany M., Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol. Biosci. 2018;19:e1800256. doi: 10.1002/mabi.201800256. [PubMed] [CrossRef] [Google Scholar]
16. Singh K.R., Nayak V., Singh J., Singh A.K., Singh R.P. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv. 2021;11:24722–24746. doi: 10.1039/D1RA04273D. [CrossRef] [Google Scholar]
17. Tan K.X., Barhoum A., Pan S., Danquah M.K. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc.; Amsterdam, The Netherlands: 2018. Risks and toxicity of nanoparticles and nanostructured materials; pp. 121–139. [CrossRef] [Google Scholar]