Volume : 10, Issue : 05, May – 2023



Authors :

Sapna Pandey,Amir Khan, Ankit Kumar, Vishal Raj Anand, Trakshi Gaur, Dileep Katiyar, Gufran Ali

Abstract :

Molecular imprinting technique is becoming an appealing and prominent strategy to synthesize materials for target recognition and rapid separation. It has been used in recent years to separate active chemicals from diverse plants and has produced pleasing results. This review aims to provide a concise overview of molecular imprinting polymers and their significant use in the extraction and separation of various plant based active compounds, such as flavonoids, alkaloids, fragrance ,anti-inflammatory, vitamins ,phenylpropanoids, anthraquinones, , terpenes, steroids, diketonesand chemicals. These findings will serve as important tool to stimulate further research into this intriguing and practical domain. Molecular imprinting approach is very attractive, popular and appealing method of generating materials for target recognition and precise separation. Recently, It has been used to separate variety of active molecules from various medicinal plants.
Keyword: molecular imprinting technology, MIP, molecular imprinted polymers, extraction, separation

Cite This Article:

Please cite this article in press Sapna Pandey et al, Application Of Molecular Imprinted Polymer In Extraction And Separation Of Plant Based Active Compounds., Indo Am. J. P. Sci, 2023; 10 (05).

Number of Downloads : 10


1. Zhang, L., Yu, H., Chen, H., Huang, Y., Bakunina, I., de Sousa, D. P., Sun, M., & Zhang, J. (2023). Application of molecular imprinting polymers in separation of active compounds from plants. In Fitoterapia (Vol. 164, p. 105383). Elsevier BV. https://doi.org/10.1016/j.fitote.2022.105383
2. Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular imprinting: perspectives and applications. In Chemical Society Reviews (Vol. 45, Issue 8, pp. 2137–2211). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c6cs00061d
3. Ranjbari, S., Mohammadinejad, A., Johnston, T. P., Kesharwani, P., Oskuee, R. K., Rezayi, M., & Sahebkar, A. (2023). Molecularly-imprinted polymers for the separation and detection of curcumin. In European Polymer Journal (Vol. 189, p. 111916). Elsevier BV. https://doi.org/10.1016/j.eurpolymj.2023.111916
4. Ibrahim, M. N. M., Sipaut, C. S., & Yusof, N. N. M. (2009). Purification of vanillin by a molecular imprinting polymer technique. In Separation and Purification Technology (Vol. 66, Issue 3, pp. 450–456). Elsevier BV. https://doi.org/10.1016/j.seppur.2009.02.010
5. Xue, J., Zhang, J., Yu, C., Arabi, M., Li, J., Li, G., Yang, G., Chen, L., & Song, Z. (2023). Synthesis and evaluation of ginsenosides imprinted polymer‐based chromatographic stationary phase. In Journal of Separation Science (p. 2200825). Wiley. https://doi.org/10.1002/jssc.202200825.
6. Cheng, J., Hou, X., Cui, Q., Shen, G., Li, S., Luo, Q., Zhou, M., Chen, H., & Zhang, Z. (2023). Separation and Purification of Hydroxyl-α-Sanshool from Zanthoxylum armatum DC. by Silica Gel Column Chromatography. In International Journal of Molecular Sciences (Vol. 24, Issue 4, p. 3156). MDPI AG. https://doi.org/10.3390/ijms24043156.
7. El-Schich, Z., Zhang, Y., Feith, M., Beyer, S., Sternbæk, L., Ohlsson, L., Stollenwerk, M., & Wingren, A. G. (2020). Molecularly imprinted polymers in biological applications. In BioTechniques (Vol. 69, Issue 6, pp. 406–419). Future Science Ltd. https://doi.org/10.2144/btn-2020-0091.
8. Kuang, Y., Chen, W., Chen, Z., Xia, Y., Rao, Q., & Yang, S. (2023). Highly-efficient selective recognition and rapid enrichment of chrysin by magnetic surface molecularly imprinted polymer. In Food Chemistry (Vol. 405, p. 134993). Elsevier BV. https://doi.org/10.1016/j.foodchem.2022.134993.
9. Syed Yaacob, S. F. F., Suwaibatu, M., Raja Jamil, R. Z., Mohamed Zain, N. N., Raoov, M., & Mohd Suah, F. B. (2022). Review of molecular imprinting polymer: basic characteristics and removal of phenolic contaminants based on the functionalized cyclodextrin monomer. In Journal of Chemical Technology & Biotechnology (Vol. 98, Issue 2, pp. 312–330).
Wiley. https://doi.org/10.1002/jctb.7215
10. Zhang, Q., Zhao, X., Cheng, Y., Li, X., & Wei, Z. (2023). Multilayer-functionalized molecularly imprinted nanocomposite membranes for efficient acteoside separation. In Microporous and Mesoporous Materials (Vol. 348, p. 112345). Elsevier BV. https://doi.org/10.1016/j.micromeso.2022.112345.
11. Yang, Y., & Shen, X. (2022). Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective. In Molecules (Vol. 27, Issue 21, p. 7355). MDPI AG. https://doi.org/10.3390/molecules27217355.
12. Viveiros, R., Rebocho, S., & Casimiro, T. (2018). Green Strategies for Molecularly Imprinted Polymer Development. In Polymers (Vol. 10, Issue 3, p. 306). MDPI AG. https://doi.org/10.3390/polym10030306.
13. Karimi Baker, Z., & sardari, S. (2021). Molecularly Imprinted Polymer (MIP) Applications in Natural Product Studies Based on Medicinal Plant and Secondary Metabolite Analysis. In Iranian Biomedical Journal (Vol. 25, Issue 2, pp. 68–77). CMV Verlag. https://doi.org/10.29252/ibj.25.2.68.
14. Sun, Y., Yao, C., Zeng, J., Zhang, Y., & Zhang, Y. (2022). Eco-friendly deep eutectic solvents skeleton patterned molecularly imprinted polymers for the separation of sinapic acid from agricultural wastes. In Colloids and Surfaces A: Physicochemical and Engineering Aspects (Vol. 640, p. 128441). Elsevier BV. https://doi.org/10.1016/j.colsurfa.2022.128441
15. Roy, S., Nag, S. ., Bhattacharyya Banerjee, M. ., Dasgupta, S., Pramanik, P., & Bandyopadhyay, R. . (2022). Detection of Geraniol in Palmarosa Essential oil using Silicone Sealant as molecularly imprinted polymer in a QCM sensor. Journal of Materials NanoScience, 9(2), 120–124.
16. Azimi, M., Ahmadi Golsefidi, M., Varasteh Moradi, A., Ebadi, M., & Zafar Mehrabian, R. (2020). Separation and Purification of Effective Ingredient of Galegine from Galega officinalis L. by Column Chromatography Tandemed with Molecularly Imprinted Polymer .
17. Enforced by Graphene Oxide (GO-MIP) Technique. Journal of Medicinal Plants and By-Product, Online First. https://doi.org/10.22092/jmpb.2020.341244.1168
18. Song, H., Zhang, H., He, Y., Gao, R., Wang, Y., Wang, W., Pfefferle, L. D., Tang, X., & Tang, Y. (2021). Novel bayberry-and-honeycomb-like magnetic surface molecularly imprinted polymers for the selective enrichment of rutin from Sophora japonica. In Food Chemistry (Vol. 356, p. 129722). Elsevier BV. https://doi.org/10.1016/j.foodchem.2021.129722
19. Quan, T., Wang, D., Yang, L., Liu, S., Tao, Y., Wang, J., Deng, L., Kang, X., Zhang, K., Xia, Z., & Gao, D. (2022). Effective extraction methods based on hydrophobic deep eutectic solvent coupled with functional molecularly imprinted polymers: Application on quercetagetin extraction from natural medicine and blood. In Microchemical Journal (Vol. 174, p. 107076). Elsevier BV. https://doi.org/10.1016/j.microc.2021.107076
20. Wang, D., Luo, X., Wang, M., Zhou, K., & Xia, Z. (2020). Selective separation and purification of polydatin by molecularly imprinted polymers from the extract of Polygoni Cuspidati Rhizoma et Radix, rats’ plasma and urine. In Journal of Chromatography B (Vol. 1156, p. 122307). Elsevier BV. https://doi.org/10.1016/j.jchromb.2020.122307.
21. Puoci, F. et al. Molecularly imprinted polymers for α-tocopherol delivery. Drug Deliv. 15, 253–258 (2008).
22. Brüggemann, O., Visnjevski, A., Burch, R., & Patel, P. (2004). Selective extraction of antioxidants with molecularly imprinted polymers. In Analytica Chimica Acta (Vol. 504, Issue 1, pp. 81–88). Elsevier BV. https://doi.org/10.1016/j.aca.2003.08.033.
23. Theodoridis, G., Lasáková, M., Škeříková, V., Tegou, A., Giantsiou, N., & Jandera, P. (2006). Molecular imprinting of natural flavonoid antioxidants: Application in solid-phase extraction for the sample pretreatment of natural products prior to HPLC analysis. In Journal of Separation Science (Vol. 29, Issue 15, pp. 2310–2321). Wiley. https://doi.org/10.1002/jssc.200500492.
24. Nestora, S., Merlier, F., Prost, E., Haupt, K., Rossi, C., & Tse Sum Bui, B. (2016). Solid-phase extraction of betanin and isobetanin from beetroot extracts using a dipicolinic acid molecularly imprinted polymer. In Journal of Chromatography A (Vol. 1465, pp. 47–54). Elsevier BV. https://doi.org/10.1016/j.chroma.2016.08.069.
25. Hong, Y., & Chen, L. (2013). Extraction of Anthraquinones from Rhubarb by a Molecularly Imprinted–Matrix Solid-Phase Dispersion Method with HPLC Detection. In Analytical Letters (Vol. 46, Issue 14, pp. 2235–2252). Informa UK Limited. https://doi.org/10.1080/00032719.2013.798797.
26. Jin, W., Zhou, T., & Li, G. (2019). Recent advances of modern sample preparation techniques for traditional Chinese medicines. In Journal of Chromatography A (Vol. 1606, p. 460377). Elsevier BV. https://doi.org/10.1016/j.chroma.2019.460377.
27. Wu, X., Liang, S., Ge, X., Lv, Y., & Sun, H. (2015). Synthesis and evaluation of dummy molecularly imprinted microspheres for the specific solid-phase extraction of six anthraquinones from slimming tea. In Journal of Separation Science (Vol. 38, Issue 8, pp. 1263–1270). Wiley. https://doi.org/10.1002/jssc.201401341.
28. Yin, S.-J., Zhao, J., & Yang, F.-Q. (2021). Recent applications of magnetic solid phase extraction in sample preparation for phytochemical analysis. In Journal of Pharmaceutical and Biomedical Analysis (Vol. 192, p. 113675). Elsevier BV. https://doi.org/10.1016/j.jpba.2020.113675.
29. Masashi Kikuchi et al 2006 Sci. Technol. Adv. Mater. 7 156.
30. Lu, Y., Zhu, Y., Zhang, Y., & Wang, K. (2019). Synthesizing Vitamin E Molecularly Imprinted Polymers via Precipitation Polymerization. In Journal of Chemical & Engineering Data (Vol. 64, Issue 3, pp. 1045–1050). American Chemical Society (ACS). https://doi.org/10.1021/acs.jced.8b00944
31. Alizadeh, T., Akhoundian, M., & Ganjali, M. R. (2018). An innovative method for synthesis of imprinted polymer nanomaterial holding thiamine (vitamin B1) selective sites and its application for thiamine determination in food samples. In Journal of Chromatography B (Vol. 1084, pp. 166–174). Elsevier BV. https://doi.org/10.1016/j.jchromb.2018.03.036
32. Wulandari, M., Urraca, J.L., Descalzo, A.B. et al. Molecularly imprinted polymers for cleanup and selective extraction of curcuminoids in medicinal herbal extracts. Anal Bioanal Chem 407, 803–812 (2015). https://doi.org/10.1007/s00216-014-8011-5.
33. anjbari, S., Mohammadinejad, A., Johnston, T. P., Kesharwani, P., Oskuee, R. K., Rezayi, M., & Sahebkar, A. (2023). Molecularly-imprinted polymers for the separation and detection of curcumin. In European Polymer Journal (Vol. 189, p. 111916). Elsevier BV. https://doi.org/10.1016/j.eurpolymj.2023.111916
34. Mamdouh, D., Mahgoub, H. A. M., Gabr, A. M. M., Ewais, E. A., & Smetanska, I. (2021). Genetic Stability, Phenolic, Flavonoid, Ferulic Acid Contents, and Antioxidant Activity of Micropropagated Lycium schweinfurthii Plants. In Plants (Vol. 10, Issue 10, p. 2089). MDPI AG. https://doi.org/10.3390/plants10102089
35. Liu, H., Qiu, X., Li, Z. et al. Higher photochemical production of bromophenol by quinone-like substances extracted from humic substances using a new emodin-imprinted polymer. Environ Chem Lett 19, 3517–3522 (2021). https://doi.org/10.1007/s10311-021-01230-x
36. Han, Jili and Cui, Xia and Xu, Jiameng and Guo, Miao and Hu, Qianqian and Chen, Guoning and Luo, Zhimin and Chang, Chun and Fu, Qiang, Molecularly Imprinted Polymers Coupled with Hplc for Selective Analysis of Emodin in Yangxue Shengfa Capsule. Available at SSRN: https://ssrn.com/abstract=4025924 or http://dx.doi.org/10.2139/ssrn.4025924
37. Hu, J., Zhang, Z., Zhang, C., Zhang, J., Zhou, H., Ning, F., Wang, D., & Du, X. (2022). Ginsenoside Rg3 determination using an electro-synthesized molecularly imprinted polymer on MWCNT-Ti3C2Tx nanocomposite modified electrode. In Talanta (Vol. 243, p. 123391). Elsevier BV. https://doi.org/10.1016/j.talanta.2022.123391
38. Zuo, J., Ma, P., Li, Z., Zhang, Y., Xiao, D., Wu, H., & Dong, A. (2022). Application of Molecularly Imprinted Polymers in Plant Natural Products: Current Progress and Future Perspectives. In Macromolecular Materials and Engineering (Vol. 308, Issue 3, p. 2200499). Wiley.https://doi.org/10.1002/mame.202200499
39. Murdaya, N., Triadenda, A. L., Rahayu, D., & Hasanah, A. N. (2022). A Review: Using Multiple Templates for Molecular Imprinted Polymer: Is It Good? In Polymers (Vol. 14, Issue 20, p. 4441). MDPI AG. https://doi.org/10.3390/polym14204441
40. Karrat, A., Palacios-Santander, J. M., Amine, A., & Cubillana-Aguilera, L. (2022). A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. In Analytica Chimica Acta (Vol. 1203, p. 339709). Elsevier BV. https://doi.org/10.1016/j.aca.2022.339709.
41. Gamal, M., Abd-ElSalam, H.-A. H., Naguib, I. A., Al-Ghobashy, M. A., Zaazaa, H. E., & Abdelkawy, M. (2021). Green and Cost-Effective Extraction Techniques of Quercetin from Mixture of Nutraceuticals with Yield Analysis via Spectrophotometry and High-Performance Liquid Chromatography Methods. In Journal of AOAC INTERNATIONAL (Vol. 105, Issue 1, pp. 249–266). Oxford University Press (OUP). https://doi.org/10.1093/jaoacint/qsab071
42. Ariani, M. D., Zuhrotun, A., Manesiotis, P., & Hasanah, A. N. (2022). Magnetic Molecularly Imprinted Polymers: An Update on Their Use in the Separation of Active Compounds from Natural Products. In Polymers (Vol. 14, Issue 7, p. 1389). MDPI AG. https://doi.org/10.3390/polym14071389