Volume : 10, Issue : 05, May – 2023

Title:

35.ANTIBIOGRAM OF BIOFILM FORMING METHICILLIN-RESISTANT Staphylococcus aureus ISOLATED FROM ACCIDENT AND BURN WOUND PATIENTS IN TERTIARY HOSPITALS WITHIN ENUGU METROPOLIS

Authors :

Elebe Promise Chiamaka, Prof. I.R Iroha, Ndukwe Emmanuel Chisom and Dr. Elebe Florence

Abstract :

Biofilm forming Methicillin-resistant Staphylococcus aureus (MRSA) strain remains a leading cause of infections with high frequency of morbidity and mortality in wound patient, but little information exists regarding the prevalence and characterization of biofilm forming MRSA from different wound sources. Thus, this study was aimed at determining the biofilm forming potentials of MRSA isolated from patient wound in National Orthopedic Hospital Enugu (NOHE) and Enugu State University Teaching Hospital (ESUTH) Enugu State. A total of 100 samples were collected from NOHE (76 from accident wound and 24 from burn wound) while 100 samples were collected from ESUTH (69 from accident wound and 31 from burn wound). The collected samples were analyzed and isolates identified using standard microbiological techniques. Antimicrobial susceptibility testing was carried out using Kirby–Bauer disk diffusion method and S. aureus isolates were screened for MRSA strain using cefoxitin and oxacillin. MRSA strains were studied for biofilm forming potential using Quantitative Assay. Multiple antibiotic resistance indices (MARI) were also determined. A total of 76(76.0 %) and 69(69.0 %) of S. aureus isolates were obtained from patients wound in NOHE and ESUTH respectively. Various degrees of resistance were observed among the S. aureus isolated to the tested antibiotics which ranged between 33.3 to 100 percentages. Exactly, 62(62.0 %) and 48(48.0 %) MRSA were found from patients wound in NOHE and ESUTH respectively. The prevalence of biofilm forming MRSA recorded 20(20.0 %) and 14(14.0 %) from patients wound in NOHE and ESUTH respectively. The isolates displayed average MARI value of ≥0.5. This study observed that biofilm forming MRSA can be treated with ciprofloxacin and imipenem. Thus, proper drug usage in the treatments of infection is recommended.
Keywords: MRSA – Methicillin Resistance Staphylococcus aureus
MSSA – Methicillin Susceptible Staphylococcus Aureus
NOHE – National Orthopedic Hospital Enugu
ESUTH – Enugu State University Teaching Hospital
MARI – Multiple Antibiotics Resistance Index

Cite This Article:

Please cite this article in press Elebe Promise Chiamaka,. Antibiogram of Biofilm Forming Methicillin-Resistant staphylococcus aureus Isolated From Accident and burn Wound Patients In Tertiary Hospitals Within Enugu Metropolis., Indo Am. J. P. Sci, 2023; 10 (05).

Number of Downloads : 10

References:

1. Abdullahi, N and Iregbu, K. C (2019). Methicillin-Resistant Staphylococcus aureus in a Central Nigeria Tertiary Hospital. Annal of Tropical Pathology, 9:6-10.
2. Abdulrahim, U., Kachallah, M., Rabiu, M., Usman, N.A., Adeshina, G.O. and Olayinka, B.O (2019). Molecular Detection of Biofilm-Producing Staphylococcus aureus Isolates from National Orthopaedic Hospital Dala, Kano State, Nigeria. Open Journal of Medical Microbiology, 9:116-126.
3. Agostinho, A., James, G., Wazni, O., Citron, M and Wilkoff, B. D (2009). Inhibition of Staphylococcus aureus Biofilms by a Novel Antibacterial Envelope for Use with Implantable Cardiac Devices. Clinical Translation Science, 2:193–198
4. Ahmed, A. M., Nasr, S., Ahmed, A.M and Elkhidir, O (2019). Knowledge, Attitude and Practice of Surgical Staff towards Preoperative Surgical Antibiotic Prophylaxis at an Academic Tertiary Hospital in Sudan. Patient Safety in Surgery, 13(42):34-35
5. Algburi, A., Comito, N., Kashtanov, D., Dicks, L. M.T and Chikindas, M. L (2017). Control of Biofilm Formation: Antibiotics and Beyond. Applied Environmental Microbiology, 83:2508-16
6. Ali, G. H and Seiffein, N. L (2022). Microbiological Study of Certain Genes Associated with Biofilm Forming Capacity of Methicillin Resistant Staphylococcus aureus in Egypt: An Eye on Nifedipine Repurposing. Microbes and Infectious Diseases, 3(1):112-127.
7. Al-Qurayshi, Z., Baker, S. M., Garstka, M., Ducoin, C., Killackey, M and Nichols, R. L (2018). Post-Operative Infections: Trends in Distribution, Risk Factors, and Clinical and Economic Burdens. Surgical Infections, 19: 717-722.
8. Amyes, S. G (2005). Treatment of Staphylococcal Infection. Biomedical Journal, 330:976–977.
9. Archer, N. K., Mazaitis, M. J., William, C. J., Leid, J. G., Powers, M. E and Shirtliff, M. E (2011). Staphylococcus aureus Biofilms: Properties, Regulation and Roles in Human Disease. Virulence, 2:445–459
10. Arciola, C. R., Campoccia, D., Montanaro, L (2018). Implant Infections: Adhesion, Biofilm Formation and Immune Evasion. Nature Review in Microbiology, 16: 397–409
11. Ariom, T. O., Iroha, I. R., Moses, I. B., Iroha, C. S., Ude, U. I and Kalu, A. C (2019). Detection and Phenotypic Characterization of Methicillin-Resistant Staphylococcus aureus from Clinical and Community Samples in Abakaliki, Ebonyi State, Nigeria. African Health Science, 19(2):2026-2035.
12. Aslam, S., Darouiche, R.O. (2011). Role of anti-biofilm-antimicrobial agents in controlling device-related infections. International Journal of Artificial. Organs, 34:752–758.
13. Azmi, K., Qrei, W and Abdeen, Z (2019). Screening of Genes Encoding Adhesion Factors and Biofilm Production in Methicillin Resistant Strains of Staphylococcus aureus Isolated from Palestinian patients. BMC genomics, 20(1):571-578.
14. Bazargani, M. M and Rohloff, J (2016). Antibiofilm Activity of Essential Oils and Plant Extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61:156–164
15. Bhattacharya, M., Wozniak, D. J., Stoodley, P and Hall-Stoodley, L (2015). Prevention and Treatment of Staphylococcus aureus biofilms. Expert Review Antibiotic and Infection Therapy, 13:1499–1516
16. Bissong, M., Wirgham, T., Enekegbe, M., Niba, P and Foka F (2016). Prevalence and Antibiotic Susceptibility Patterns of Methicillin Resistant Staphylococcus aureus in Patients Attending the Laquintinie Hospital Douala, Cameroon. European Journal of Clinical and Biomedical Sciences, 2(6):92–96.
17. Bowler, P. G., Duerden, B. I and Armstrong, D. G (2001). Wound Microbiology and Associated Approaches to Wound Management. Clinical Microbiology Review, 14(2):244–69.
18. C.D.C. (1999). From the Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus -Minnesota and North Dakota, Jama. 282: 1123–1125.
19. Chambers, H. F and Deleo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Review Microbiology,7:629–641.
20. Chelkeba, L and Melaku, T (2021). Epidemiology of Staphylococci Species and Their Antimicrobial-Resistance Among Patients with Wound Infection in Ethiopia: A Systematic Review and Meta-Analysis. Journal of Global Antimicrobial Resistance, 23:34-78.
21. Chen, Q., Xie, S., Lou, X., Cheng, S., Liu, X., Zheng, W., Zheng, Z., Wang, H (2020). Biofilm Formation and Prevalence of Adhesion Genes among Staphylococcus aureus Isolates from Different Food Sources. Microbiology open, 9: 9-46.
22. Cheung, G.Y., Duong, A.C and Otto, M. (2012). Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis. Microbes Infection; 14: 380–386.
23. Cheung, G.Y., Wang, R., Khan, B.A., Sturdevant, D.E., and Otto, M. (2011) Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun 79: 1927– 1935.
24. Collins, J., Rudkin, J., Recker, M., Pozzi, C., O’Gara, J.P., and Massey, R.C. (2010). “Offsetting virulence and antibiotic resistance costs by MRSA”. The ISME Journal. 4 (4): 577–84.
25. Coraça-Huber, D. C., Kreid, L., Steixner, S., Hinz, M., Dammerer, D and Fille, M (2020). Identification and Morphological Characterization of Biofilms Formed by Strains Causing Infection in Orthopedic Implants. Pathogens, 9:6-49.
26. Corrigan, R. M., Rigby, D., Handley, P and Foster, T. J (2007). The Role of Staphylococcus aureus Surface Protein SasG in Adherence and Biofilm Formation. Journal of Microbiology, 153:2435–2446.
27. Cramton, S.E., Gerke, C., Schnell, N.F., Nichols, W.W., G¨otz, F. (1999). “The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation”. Infection and Immunity. vol.67, no.10, pp.5427–5433.
28. Craven, R.R., Gao, X., Allen, I.C., Gris, D., BubeckWardenburg, J., McElvania-Tekippe, E., Ting, J.P., Duncan, J.A. (2009). Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS ONE; 4: e7446.
29. DeLeo, F.R., Kennedy, A.D., Chen, L., BubeckWardenburg, J., Kobayashi, S.D., Mathema, B., et al. (2011) Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci USA 108: 18091– 18096.
30. Derek, F., Brown, J., Edwards, D., Peter, M., Morrison, D., Ridgway, J.L., Towner, K.J. (2005). Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). Antimicrobial Chemotherapy; 56: 10001018.
31. Deyno, S., Fekadu, S., and Astatkie, A. (2017). “Resistance of Staphylococcus aureus to antimicrobial agents in Ethiopia: a meta-analysis,” Antimicrobial Resistance and Infection Control, vol. 6, no. 1, p. 85.
32. Dilnessa T., and Bitew, A. (2016). “Prevalence and antimicrobial susceptibility pattern of methicillin resistant Staphylococcus aureus isolated from clinical samples at Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia,” BMC Infectious Diseases, vol. 16, no. 1, p. 398.
33. Dinges, M.M., Orwin, P.M., Schlievert, P.M. (2000). Exotoxins of Staphylococcus aureus. Clin Microbiol Rev. 13:16–34.
34. Dobinsky, S., Kiel, K., Rohde, H., Bartscht, K., Knobloch, J.K., Horstkotte, M.A. (2003). Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol. 185:2879–86.
35. Donlan, R. M (2000). Role of Biofilms in Antimicrobial Resistance. Frontier in Microbiology, 46:47–52
36. Dutta, A., Bhattacharyya, S., Kundu, A., Dutta, D and Das, A. K (2016). Macroscopic Amyloid Fiber Formation by Staphylococcal Biofilm Associated SuhB Protein. Biophysiology and Chemistry, 217:32–41
37. Fadeeva, E., Schlie-Wolter, S., Chichkov, B.N., Paasche, G and Lenarz, T (2016). Structuring of Biomaterial Surfaces with Ultrashort Pulsed Laser Radiation. In Laser Surface Modification of Biomaterials: Techniques and Applications, Elsevier Inc.: Amsterdam, The Netherlands, pp. 145–172.
38. Fontecha-Umaña, F., Ríos-Castillo, A.G., Ripolles-Avila, C and Rodríguez-Jerez, J. J (2020). Antimicrobial Activity and Prevention of Bacterial Biofilm Formation of Silver and Zinc Oxide Nanoparticle-containing Polyester Surfaces at various Concentrations for use. Foods, 9:4-42.
39. Foster, T. J., Geoghegan, J. A., Ganesh, V. K and Höök, M (2014). Adhesion, Invasion and Evasion: The many Functions of the Surface Proteins of Staphylococcus aureus. Nature Review in Microbiology, 12:49–62.
40. Fridkin, S.K., Hageman, J.C., Morrison, M., Sanza, L.T., Como-Sabetti, K., Jernigan, J.A., Harriman, K., Harrison, L.H., Lynfield, R., Farley, M.M. (2005). Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 352: 1436–1444.
41. Gaire, U., Shrestha, T. U., Adhikari, S., Adhikari, N., Bastola, A., Rijal, K. R., Ghimire, P and Banjara, M. R (2021). Antibiotic Susceptibility, Biofilm Production, and Detection of mecA Gene among Staphylococcus aureus Isolates from Different Clinical Specimens. Diseases, 9:80-109
42. Garoy, E. Y., Gebreab, Y. B., Achila, O. O.,Tekeste, D. G., Robel, R. K., Kiflay, G. R and Tesfu, T (2018). Methicillin-Resistant Staphylococcus aureus (MRSA): Prevalence and Antimicrobial Sensitivity Pattern among Patients—A Multicenter Study in Asmara, Eritrea, Canadian Journal of Infectious Diseases and Medical Microbiology, 9: 832-1834.
43. Ghaznavi-Rad, E., Shamsudin, M. N., Sekawi, Z., Khoon, L.Y., Aziz, M. N., Hamat, R.A., Othman, N., Chong, P. P., van Belkum, A., Ghasemzadeh-Moghaddam, H and Neela, V (2010). Predominance and Emergence of Clones of Hospital-acquired Methicillin-resistant Staphylococcus aureus in Malaysia. Journal of Clinical Microbiology, 48(3): 867-872.
44. Ghebremedhin, B., Olugbosi, M., Raji, A., Layer, F., Bakare, R and Konig, B (2009). Emergence of a Community-associated Methicillin-resistant Staphylococcus aureus Strain with a unique resistance profile in Southwest Nigeria. Journal of Clinical Microbiology, 47(9): 2975–2980.
45. Gonsu, K.H., Kouemo, S.L., Toukam, M., Ndze, V.N., and Koulla, S.S. (2013). “Nasal carriage of methicillin resistant Staphylococcus aureus and its antibiotic susceptibility pattern in adult hospitalized patients and medical staff in some hospitals in Cameroon,” Journal of Microbiology and Antimicrobials, vol. 5, no. 3, pp. 29–33.
46. Gordon, R. J and Lowy, F.D (2008). Pathogenesis of Methicillin Resistant Staphylococcus aureus Infection. Clinical Infectious Disease,46:350–359.
47. Gould, D., Chamberlaine, A. (1995). Staphylococcus aureus: a review of the literature. J Clin Nurs 4:5–12.
48. Graveland, H., Duim, B., van Duijkeren, E., Heederik, D., Wagenaar, J.A. (2011). “Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans”. International Journal of Medical Microbiology. 301 (8): 630–4.
49. Guangyin, Z and Youcai, Z (2017). Harvest of Bioenergy from Sewage Sludge by Anaerobic Digestion. In Pollution Control and Resource Recovery, Elsevier: Amsterdam, The Netherlands, Pp: 181–273
50. Gurusamy, K.S., Koti, R., Toon, C.D., Wilson, P., Davidson, B.R. (2013). “Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in surgical wounds”. The Cochrane Database of Systematic Reviews (8). PMID 23963687.
51. Hamid, M. H., Arbab, A. H and Yousef, B. A (2020). Bacteriological Profile and Antibiotic Susceptibility of Diabetic Foot Infections at Ribat University Hospital; a Retrospective Study from Sudan. Journal of Diabetes and Metabolic Disorders, 19:1397-1406.
52. Hamida, R.S., Ali, M.A., Goda, D.A., Khalil, M.I and Al-Zaban, M. I (2020). Novel Biogenic Silver Nanoparticle-Induced Reactive Oxygen Species Inhibit the Biofilm Formation and Virulence Activities of Methicillin-Resistant Staphylococcus aureus (MRSA) Strain. Frontier Bioengineering and Biotechnology, 8:433-456
53. Hassan, M. A., Abd El-Aziz, S., Elbadry, H. M., El-Aassar, S. A and Tamer, T. M (2022). Prevalence, Antimicrobial Resistance Profile, and Characterization of Multi-drug Resistant Bacteria from various Infected Wounds in North Egypt. Saudi Journal of Biological Sciences, 29:2978–2988
54. Hassan, M. A., Tamer, T. M., Rageh, A. A., Abou-Zeid, A. M., Abd El-Zaher, E. H. F and Kenawy, E. R (2019). Insight into Multidrug-resistant Microorganisms from Microbial Infected Diabetic Foot Ulcers. Diabetes Metabolic Syndrome: Clinical Research Review, 13 (2):1261–1270.
55. Herman-Bausier, P., Labate, C., Towell, A. M., Derclaye, S., Geoghegan, J. A and Dufrêne, Y. F (2018). Staphylococcus aureus Clumping Factor A is a Force-sensitive Molecular Switch that Activates Bacterial Adhesion. Proceedings of National Academic of Science, 115:55-64.
56. Hickey, E. E., Wong, H. S., Khazandi, M., Ogunniyi, A. D., Petrovski, K.R., Garg, S., Page, S. W., O’Handley, R and Trott, D. J (2018). Repurposing Ionophores as Novel Antimicrobial Agents for the Treatment of Bovine Mastitis caused by Gram-positive Pathogens. Journal of Veterinary Pharmacology and Therapy, 41:746–754
57. Hiramatsu, K., Cui, L., Kuroda, M., and Ito, T. (2001). The emergence and evolution of methicillin resistant Staphylococcus aureus. Trends microbial 9: 486-493
58. Hochbaum, A. I., Kolodkin-Gal, I., Foulston, L., Kolter, R., Aizenberg, J and Losick, R (2011). Inhibitory Effects of d-Amino Acids on Staphylococcus aureus Biofilm Development. Journal of Bacteriology, 193:56-16.
59. Holmes, A., Ganner, M., McGuane, S., Pitt, T. L., Cookson, B. D and Kearns, A. M (2005). Staphylococcus aureus Isolates Carrying Panton-Valentine leucocidin Genes in England and Wales: Frequency, Characterization, and Association with Clinical Disease. Journal of Clinical Microbiology, 43(5):2384–2390.
60. Holstege, C.P (2014). Rifampin. In Encyclopedia of Toxicology: Third Edition, Elsevier: Amsterdam, The Netherlands, Pp. 134–136.
61. Hu, H., Ramezanpour, M., Hayes, A. J., Liu, S., Psaltis, A.J., Wormald, P. J and Vreugde, S (2019). Sub-inhibitory Clindamycin and Azithromycin Reduce S. aureus Exoprotein Induced Toxicity, Inflammation, Barrier Disruption and Invasion. Journal of Clinical Medicine, 8:16-17.
62. Huszczynski, S. M.., Lam, J. S and Khursigara, C. M (2019). The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens, 9:6-33.
63. Idrees, M., Mohammad, A.R., Karodia, N and Rahman, A (2020). Multimodal Role of Amino Acids in Microbial Control and Drug Development. Antibiotics, 9:330-350.
64. Idrees, M., Sawant, S., Karodia, N and Rahman, A (2021). Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. International Journal of Environmental Research and Public Health, 18:7-602.
65. Inoshima, N., Wang, Y., BubeckWardenburg, J. (2012). Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J Invest Dermatol; 132: 1513 –1516.
66. Iroha, I. R., Orji, J. O., Onwa, N. C., Nwuzo, A. C., Okonkwo, E. C., Ibiam, E. O., Nwachi, A. C., Afuikwa, F. N., Agah, V. M., Ejikeugwu, E. P. C., Agumah, N. B., Moses, I.B., Ugbo, E., Ukpai, E.G., Nwakaeze, E. A., Oke, B., Ogbu, L and Nwunna, E (2019). Microbiology Practical Handbook. (Editor; Ogbu. O), 1st Edition. Charlieteximage Africa (CiAfrica Press), Pp:344.
67. Jamal, M., Tasneem, U., Hussain, T., Andleeb, S. (2015). Bacterial Biofilm: Its Composition, Formation and Role in Human Infections. Journal of Microbiology and Biotechnology. 4 (3).
68. Jensen, S.O., Lyon, B.R. (2009). “Genetics of antimicrobial resistance in Staphylococcus aureus”. Future Microbiology. 4 (5): 565–82.
69. Kaito, C., Saito, Y., Nagano, G., Ikuo, M., Omae, Y., Hanada, Y., Cheung, A. (2011). “Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulating Staphylococcus aureus virulence”. PLOS Pathogens. 7 (2).
70. Kaplan, J.B. (2010). “Biofilm dispersal: mechanisms, clinical implications and potential therapeutic uses”. Journal of dental research, vol.89, no.3, pp.205–218.
71. Katayama, Y., Ito, T., and Hiramatsu, K. (2000). A new class of genetic element stapgylococcal cassette chromosome mec, encodes methicillin resistance in staphylococcus aureus. Antimicrob agents chemother44: 1549-1555.
72. Kobayashi, S.D., Malachowa, N., Whitney, A.R., Braughton, K.R., Gardner, D.J., Long, D., BubeckWardenburg, J., Schneewind, O., Otto, M., DeLeo, F.R. (2011). Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis; 204: 937–941.
73. Kong, E.F., Johnson, J.K., and Jabra-Rizk, M.A. (2016). “Community associated methicillin-resistant Staphylococcus aureus: an enemy amidst us,” PLOS Pathogens, vol. 12, no. 10.
74. Kostakioti, M., Hadjifrangiskou, M and Hultgren, S. J (2013). Bacterial biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Post-antibiotic Era. Cold Spring Harb Perspective of Medicine, 3:10-306
75. Kot, B., Sytykiewicz, H and Sprawka, I (2018). Expression of the Biofilm-Associated Genes in Methicillin-Resistant Staphylococcus aureus in Biofilm and Planktonic Conditions. International Journal of Molecular Science, 19:34-87.
76. Krasowska, A and Sigler, K (2014). How Microorganisms use Hydrophobicity and What does this Mean for Human needs? Frontier in Cell Infection and Microbiology, 4:12-89.
77. Kretschmer, D., Gleske, A.K., Rautenberg, M., Wang, R., Koberle, M., Bohn, E., Schoneberg, T., Rabiet, M.J., Boulay, F., Klebanoff, S.J., van Kessel, K.A., van Strijp, J.A., Otto, M., Peschel, A. (2010). Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe; 7: 463–473.
78. Kuo, S.C., Chiang, M.C., Lee, W.S., Chen, L.Y., Wu, H.S., Yu, K.W. (2012). ”Comparison of microbiological and clinical characteristics based on SCCmec typing in patients with community-onset methicillin resistance Staphylococcus aureus (MRSA) bacteraemia” (PDF). International Journal of Antimicrobial Agents. 39 (1): 22–6.
79. Landini, P., Antoniani, D., Burgess, J.G., Nijland, R. (2010). Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl. Microbiol. Biotechnol 86, 813–823
80. Langelotz, C., Mueller-Rau, C., Terziyski, S., Rau, B., Krannich, A and Gastmeier, P (2014). Gender-Specific Differences in Surgical Site Infections: An Analysis of 438,050 Surgical Procedures from the German National Nosocomial Infections Surveillance System. Visceral Medicine, 30:114-117.
81. Le, K.Y and Otto, M (2015). Quorum-sensing Regulation in Staphylococci: An Overview. Frontier in Microbiology, 6:11-74.
82. Li, M., Du, X., Villaruz, A.E., Diep, B.A., Wang, D., Song, Y. (2012). MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18: 816– 819.
83. Lister, J. L and Horswill, A. R (2014). Staphylococcus aureus Biofilms: Recent Developments in Biofilm Dispersal. Frontier in Cell Infection and Microbiology, 4:17-8.
84. Mathur, T., Singhal, S., Khan, S., Upadhyay, D., Fatma, T., Rattan, A. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol; 24(1):25.
85. Mediavilla, J.R., Chen, L., Mathema, B., Kreiswirth, B.N. (2012). Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) CurrOpinMicrobiol. 15: 588–595.
86. Milheiriço, C., Oliveira, D.C., de Lencastre, H. (2007). Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: ‘SCCmec IV multiplex’. J AntimicrobChemother; 60: 42–8.
87. Miller, L.G., Perdreau-Remington, F., Rieg, G., Mehdi, S., Perlroth, J., Bayer, A.S., Tang, A.W., Phung, T.O., Spellberg, B. (2005). Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 352: 1445–1453.
88. Murphy, R. A. and Haque, R. (1974). Large scale production of staphylococcal delta hemolysin by the dialysis membrane technique. Can. J. Microbiol. 20:1061- 1063.
89. O’Toole, G.A. (2011). Microtiter dish biofilm formation assay. Journal Vis Exp; 30 (47).
90. Ojulong, J., Mwambu, T., Jolobo M. (2008). “Prevalence of methicillin resistant Staphylococcus aureus (MRSA) among isolates from surgical site infections in Mulago hospital Kampala, Uganda,” Internet Journal of Infectious Diseases, vol. 7, no. 2, p. 10326.
91. Omuse, G., Kariuki, S., and Revathi, G. (2012). “Unexpected absence of meticillin-resistant Staphylococcus aureus nasal carriage by healthcare workers in a tertiary hospital in Kenya,” Journal of Hospital Infection, vol. 80, no. 1, pp. 71–73.
92. Otter, J.A., French, G.L. (2008). The emergence of community-associated methicillin-resistant Staphylococcus aureus at a London teaching hospital, 2000–2006. Clin Microbiol Infect; 14: 670–676.
93. Otto M. (2010). Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol; 64: 143–162.
94. Paul, S., Bezbaruah, R.L., Roy, M.K., A. C. Ghosh, A.C. (1997) “Multiple antibiotic resistance (MAR) index and its reversion in Pseudomonas aeruginosa”. Letters in Applied Microbiology vol. 24, no.3, pp. 169–171.
95. Pantosti, A., Sanchini, A., Monaco, M. (2007). “Mechanisms of antibiotic resistance in Staphylococcus aureus”. Future Microbiology. 2 (3): 323–34.
96. Periasamy, S., Joo, H.S., Duong, A.C., Bach, T.H., Tan, V.Y., Chatterjee, S.S., Cheung, G.Y., Otto, M. (2012). How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A; 109: 1281–1286.
97. Queck, S.Y., Khan, B.A., Wang, R., Bach, T.H., Kretschmer, D., Chen, L. (2009) Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoSPathog 5: e1000533.
98. Rice, K.C., Mann, E.E., Endres, J.L. (2007). “The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus”. Proceedings of the National Academy of Sciences of the United States of America. vol.104, no.19, pp.8113–8118.
99. Rudkin, J.K., Edwards, A.M., Bowden, M.G., Brown, E.L., Pozzi, C., Waters, E.M., et al. (2012). Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis 205: 798– 806.
100. Schwartz, K., Syed, A.K., Stephenson, R.E., Rickard, A.H., Boles, B.R. (2012). Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoSPathog. 8: e1002744.
101. Soong, G., Chun, J., Parker, D., Prince, A. (2012). Staphylococcus aureus activation of caspase 1/calpain signaling mediates invasion through human keratinocytes. J Infect Dis; 205: 1571–1579.
102. Stefani, S., Chung, D.R., Lindsay, J.A., Friedrich, A.W., Kearns, A.M., Westh, H., Mackenzie, F.M. (2012). “Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonization of typing methods”. International Journal of Antimicrobial Agents. 39 (4): 273–82.
103. Szmigielski, S., Prevost, G., Monteil, H., Colin, D.A., Jeljaszewicz, J. (1999). Leukocidal toxins of staphylococci. ZentralblBakteriol;289: 185–201.
104. Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G. (2015). “Staphylococcus aureus infection: epidemiology, pathophysiology, clinical manifestations and management”. Clinical Microbiology Reviews. 28 (3): 603–61.
105. Vandenesch, F., Naimi, T., Enright, M.C., Lina, G., Nimmo, G.R., Heffernan, H., Liassine, N., Bes, M., Greenland, T., Reverdy, M.E., Etienne, J. (2003). Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis; 9: 978–984.
106. Voyich, J.M., Braughton, K.R., Sturdevant, D.E., Whitney, A.R., Said-Salim, B., Porcella, S.F., Long, R.D., Dorward, D.W., Gardner, D.J., Kreiswirth, B.N., Musser, J.M., DeLeo, F.R. (2005). Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol.175: 3907–3919.
107. Wertheim, H.F., Melles, D.C., Vos, M.C., van Leeuwen, W., van Belkum, A., Verbrugh, H.A., Nouwen, J.L. (2005). The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762.
108. WHO, WHO’s First Global Report on Antibiotic Resistance, News Release, Geneva, Switzerland, (2014).
109. Zhang, S.L., Maddox, C.W. (2000). Cytotoxic activity of coagulase negative Staphylococci in bovine mastitis. Infection and Immunity; 68 (3): 1102-1108.