Volume : 10, Issue : 05, May – 2023

Title:

65.PHYTOCHEMICAL SCREENING AND ANTI ALZHIEMER ACTIVITY FOR THE PEELS OF CITRUS MAXIMA

Authors :

Permula Praveen Kumar, Mudavath Mounika, Nangi Vijay, Lavudya Seetharam, Banothu Ganesh

Abstract :

The literature survey showed that, only scrappy information was available on this shrub. With this scanty information on this plant consistent expectation of unexplored Phyto chemical profile and pharmacological efficacy under Rutaceae family forms the rationale for the study. Extraction and phytochemical evaluation of them deals with chemical analysis of the extract used for pharmacological screening. Qualitative preliminary phytochemical analysis was performed to detect the phytoconstituents nature and their presence in powder and its various extracts. Ethyl acetate extract showed the presence of steroids, flavanoids, tannins, triterpenoid and phenolic compound. Whereas the ethanolic extract showed the presence of steroids, flavanoids, phenols, phytosterol, gums and mucilage, carbohydrate, triterpenoids, volatile oil. Aqueous extract showed the presence of steroids, flavanoids, phenols, gums and mucilage, carbohydrate and triterpenoid. Based on the acute toxicity studies, previously reported 1/10th and 1/5th (200 and 400 mg/kg) of the maximum tolerated dose (2000 mg/kg B.W) were selected for the in vivo studies. The ethanolic extract of the peels of Citrus maxima was administered orally for fourteen days showed a dose dependent and significant improvement in memory of young mice and it also successfully reversed the memory deficits induced by Scopalamine. Furthermore a significant decreased in cholinergic transmission level in mice brain accounts for its multifarious beneficial effects such as anti alzheimer activity. Ethanolic extract showed the significant anti Alzheimer activity thus it was packed into a column to scrutinize the phytoconstituents present in it.
Key words: Phytochemical, Anti Alzhiemer Activity, Peels Of Citrus Maxima

Cite This Article:

Please cite this article in press Permula Praveen Kumar et al,. Phytochemical Screening And Anti Alzhiemer Activity For The Peels Of Citrus Maxima., Indo Am. J. P. Sci, 2023; 10 (05).

Number of Downloads : 10

References:

1. Religa, D.; Laudon, H.; Styczynska, M.; Winblad, B.; Näslund, J.; Haroutunian, V. Amyloid β Pathology in Alzheimer’s Disease and Schizophrenia. Am. J. Psychiatry 2003, 160, 867–872. [Google Scholar] [CrossRef]
2. Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 532–539. [Google Scholar] [CrossRef][Green Version]
3. Kalaria, R.N.; Maestre, G.E.; Arizaga, R.; Friedland, R.P.; Galasko, D.; Hall, K.; Luchsinger, J.A.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; et al. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008, 7, 812–826. [Google Scholar] [CrossRef] [PubMed][Green Version]
4. van der Kleij, L.A.; Petersen, E.T.; Siebner, H.R.; Hendrikse, J.; Frederiksen, K.S.; Sobol, N.A.; Hasselbalch, S.G.; Garde, E. The effect of physical exercise on cerebral blood flow in Alzheimer’s disease. NeuroImage Clin. 2018, 20, 650–654. [Google Scholar] [CrossRef] [PubMed]
5. Isaacson, R.S.; Ganzer, C.A.; Hristov, H.; Hackett, K.; Caesar, E.; Cohen, R.; Kachko, R.; Meléndez-Cabrero, J.; Rahman, A.; Scheyer, O.; et al. The clinical practice of risk reduction for Alzheimer’s disease: A precision medicine approach. Alzheimer’s Dement. 2018, 14, 1663–1673. [Google Scholar] [CrossRef]
6. Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
7. Mantzavinos, V.; Alexiou, A. Biomarkers for Alzheimer’s Disease Diagnosis. Curr. Alzheimer Res. 2017, 14, 1149–1154. [Google Scholar] [CrossRef][Green Version]
8. Arevalo-Rodriguez, I.; Smailagic, N.; Roqué i Figuls, M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2015, 3, 1–62. [Google Scholar] [CrossRef]
9. Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J. Memantine in Moderate-to-Severe Alzheimer’s Disease. N. Engl. J. Med. 2003, 348, 1333–1341. [Google Scholar] [CrossRef]
10. Thal, D.R.; Attems, J.; Ewers, M. Spreading of Amyloid, Tau, and Microvascular Pathology in Alzheimer’s Disease: Findings from Neuropathological and Neuroimaging Studies. J. Alzheimer’s Dis. 2014, 42, S421–S429. [Google Scholar] [CrossRef]
11. DeKosky, S.T. Pathology and Pathways of Alzheimer’s Disease with an Update on New Developments in Treatment. J. Am. Geriatr. Soc. 2003, 51, S314–S320. [Google Scholar] [CrossRef] [PubMed]
12. Katz, M.J.; Lipton, R.B.; Hall, C.B.; Zimmerman, M.E.; Sanders, A.E.; Verghese, J.; Dickson, D.W.; Derby, C.A. Age-specific and Sex-specific Prevalence and Incidence of Mild Cognitive Impairment, Dementia, and Alzheimer Dementia in Blacks and Whites. Alzheimer Dis. Assoc. Disord. 2012, 26, 335–343. [Google Scholar] [CrossRef] [PubMed]
13. Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer’s Disease: Optimization, Biological Efficacy, and Potential Toxicity. J. Pharm. Sci. 2015, 104, 3544–3556. [Google Scholar] [CrossRef]
14. Larsson, S.; Orsini, N. Coffee Consumption and Risk of Dementia and Alzheimer’s Disease: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2018, 10, 1501. [Google Scholar] [CrossRef] [PubMed][Green Version]
15. Prince, M.; Albanese, E.; Guerchet, M.; Prina, M. World Alzheimer Report 2014 Dementia and Risk Reduction; Alzheimer’s Disease International: London, UK, 2014. [Google Scholar]