Volume : 10, Issue : 11, November – 2023



Authors :

Abdulelah Mohsen Alharbi , Faris Saud -Faraj Allah Aljuaid, Osama Hamad Alahmadi, Abdulrahman Abdullah Alorabi, Naif Moosa Alnafeesi, Ayman Abdulalrahman Alkhattabi , Ahmad Ali Abdullah Al-Sharif , Dr.Ahmed Mohammed Alkharouby,MD, Sari Mohammed Alhawiti.

Abstract :

Vancomycin is a glycopeptide antibiotic used to treat grampositive bacterial infections. Consumption has recently grown due to an increase in the incidence of infections caused by methicillinresistant S. aureus (MRSA). Increased use has been linked to increased minimum inhibitory concentration (MIC) levels, a phenomenon known as “MIC.” Although the source of this creep is unknown, it has raised clinical concerns about the use of vancomycin. The emphasis on appropriate drug use has increased. Literature search done through the databases, for all published articles up to the beginning of 2022. This narrative literature review’s findings strongly show that there is a link between vancomycin trough value and nephrotoxicity. Patients with vancomycin troughs larger than 15 mg/liter had a higher risk of nephrotoxicity than patients with troughs less than 15 mg/liter. Toxicity increased with therapy duration, with the highest rates found in critically sick patients who were in the ICU and receiving concomitant nephrotoxins.

Cite This Article:

Please cite this article in press Abdulelah Mohsen Alharbi et al, An Overview Appropriate Adjustment For Vancomycin Level, Complications, Indo Am. J. P. Sci, 2023; 10 (11).

Number of Downloads : 10


1. Levine DP. 2006. Vancomycin: a history. Clin. Infect. Dis. 42(Suppl 1):S5–S12
2. Popovich KJ, Weinstein RA, Hota B. 2008. Are community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin. Infect. Dis. 46:787–794.
3. Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O’Boyle C, Danila RN, Lynfield R. 2003. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–2984.
4. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM. 2005. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med. 352:1436–1444.
5. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Talan M JRDA, Chambers HF. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 52:e18–e55.
6. van Hal SJ, Lodise TP, Paterson DL. 2012. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin. Infect. Dis. 54:755–771.
7. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. 2004. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharmacokinet. 43:925–942.
8. Kullar R, Davis SL, Levine DP, Rybak MJ. 2011. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin. Infect. Dis. 52:975–981.
9. Rybak M, Lomaestro B, Rotschafer JC, Moellering R, JR, Craig W, Billeter M, Dalovisio JR, Levine DP. 2009. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 66:82–98
10. Kullar R, Davis SL, Taylor TN, Kaye KS, Rybak MJ. 2012. Effects of targeting higher vancomycin trough levels on clinical outcomes and costs in a matched patient cohort. Pharmacotherapy 32:195–201.
11. Lodise TP, Drusano GL, Zasowski E, Dihmess A, Lazariu V, Cosler L, McNutt LA. 2014. Vancomycin exposure in patients with methicillin-resistant Staphylococcus aureus bloodstream infections: how much is enough? Clin Infect Dis 59(5):666–675.
12. Docobo-Pérez F, López-Rojas R, Domínguez-Herrera J, Jiménez-Mejias ME, Pichardo C, Ibáñez-Martínez J, Pachón J. 2012. Efficacy of linezolid versus a pharmacodynamically optimized vancomycin therapy in an experimental pneumonia model caused by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 67:1961–1967.
13. Zelenitsky S, Rubinstein E, Ariano R, Iacovides H, Dodek P, Mirzanejad Y, Kumar A. 2013. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents 41:255–260.
14. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. 2011. Vancomycin: we can’t get there from here. Clin Infect Dis 52:969–974.
15. Neely MN, Youn G, Jones B, Jelliffe RW, Drusano GL, Rodvold KA, Lodise TP. 2014. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother 58:309–316.
16. Avent ML, Vaska VL, Rogers BA, Cheng AC, van Hal SJ, Holmes NE, Howden BP, Paterson DL. 2013. Vancomycin therapeutics and monitoring: a contemporary approach. Intern Med J 43:110–119.
17. Wesner AR, Brackbill ML, Coyle LL, Kidd RS. 2013. Prospective trial of a novel nomogram to achieve updated vancomycin trough concentrations. Interdiscip Perspect Infect Dis 2013:839456.
18. Kullar R, Leonard SN, Davis SL, Delgado G, Pogue JM, Wahby KA, Falcione B, Rybak MJ. 2011. Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15 to 20 mg/liter suggested by the vancomycin consensus guidelines. Pharmacotherapy 31:441–448.
19. Revilla N, Martín-Suárez A, Pérez MP, González FM, Fernández de Gatta MDM. 2010. Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br J Clin Pharmacol 70:201–212.
20. Wang JT, Fang CT, Chen YC, Chang SC. 2001. Necessity of a loading dose when using vancomycin in critically ill patients. J Antimicrob Chemother 47:246.
21. Rossini JM, Laughner J, Levine BJ, Papas MA, Reinhardt JF, Jasani NB. 2015. A randomized trial of loading vancomycin in the emergency department. Ann Pharmacother. 49:6–13.
22. Truong J, Levkovich BJ, Padiglione AA. 2012. Simple approach to improving vancomycin dosing in intensive care: a standardized loading dose results in earlier therapeutic levels. Intern Med J 42:23–29.
23. Vandecasteele SJ, De Bacquer D, De Vriese AS. 2011. Implementation of a dose calculator for vancomycin to achieve target trough levels of 15 to 20 μg/ml in persons undergoing hemodialysis. Clin Infect Dis 53:124–129.
24. Wysocki M, Delatour F, Faurisson F, Rauss A, Pean Y, Misset B, Thomas F, Timsit JF, Similowski T, Mentec H, Mier L, Dreyfuss D. 2001. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45:2460–2467.
25. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. 2012. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother 67:17–24.
26. Hanrahan TP, Harlow G, Hutchinson J, Dulhunty JM, Lipman J, Whitehouse T, Roberts J. 2014. Vancomycin-associated nephrotoxicity in the critically ill: a retrospective multivariate regression analysis. Crit Care Med 42:2527–2536.
27. Verrall AJ, Llorin R, Tam VH, Lye DC, Sulaiman Z, Zhong L, Archuleta S, Fisher DA. 2012. Efficacy of continuous infusion of vancomycin for the outpatient treatment of methicillin-resistant Staphylococcus aureus infections. J Antimicrob Chemother 67:2970–2973.
28. Ye ZK, Tang HL, Zhai SD. Benefits of therapeutic drug monitoring of vancomycin: a systematic review and meta‐analysis. PLoS ONE 2013; 8: e77169.
29. Vuagnat A, Stern R, Lotthe A, Schumahmacher H, Duong M, Hoffmeyer P, Bernard L. 2004. High dose vancomycin for osteomyelitis: continuous versus intermittent infusion. J Clin Pharm Ther 29:351–357.
30. Hahn-Ast C, Glasmacher A, Arns A, Muhling A, Orlopp K, Marklein G, Von Lilienfeld-Toal M. 2008. An audit of efficacy and toxicity of teicoplanin versus vancomycin in febrile neutropenia: is the different toxicity profile clinically relevant? Infection 36:54–58.
31. Hermsen ED, Hanson M, Sankaranarayanan J, Stoner JA, Florescu MC, Rupp ME. 2010. Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin. Drug Saf. 9:9–14.
32. Kralovicova K, Spanik S, Halko J, Netriova J, Studena-Mrazova M, Novotny J, Grausova S, Koren P, Krupova I, Demitrovicova A, Kukuckova E, Krcmery V., Jr 1997. Do vancomycin serum levels predict failures of vancomycin therapy or nephrotoxicity in cancer patients? J. Chemother. 9:420–426.
33. Kullar R, Leonard SN, Davis SL, Delgado G, Jr, Pogue JM, Wahby KA, Falcione B, Rybak MJ. 2011. Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15–20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy 31:441–448.
34. Lahoti A, Kantarjian H, Salahudeen AK, Ravandi F, Cortes JE, Faderl S, O’Brien S, Wierda W, Mattiuzzi GN. 2010. Predictors and outcome of acute kidney injury in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome. Cancer 116:4063–4068.
35. Lemaire X, Loiez C, Valette M, Migaud H, Dubreuil L, Yazdanpanah Y, Senneville E. 2011. Comparison of vancomycin and teicoplanin trough serum levels in patients with infected orthopedic devices: new data for old therapies. J. Infect. Chemother. 17:370–374.