Volume : 11, Issue : 12, December – 2024

Title:

ARTIFICIAL INTELLIGENCE IN PREHOSPITAL EMERGENCY CARE: A LITERATURE REVIEW

Authors :

Ahmed Ali Alghamdi, Saeed Ali Alkatheri, Abdulrahman Jameel Aljohani, Fahad Ali Madkhali, Ayman Jamaan Alomary, Attieh Yahya Alzahrani, Sharaf Ahmed Muhammad AL Munimi, Sultan Ateq Abdullmain Albeshri, Waleed Ghoneim Mohammed Al-Jahdali, Saber Obaid Alotaibi

Abstract :

This literature review investigates the transformative impact of artificial intelligence (AI) on prehospital emergency care, focusing on its applications in diagnosis, triage, and patient management. By synthesizing recent studies, the review highlights how AI technologies, especially machine learning and deep learning, significantly enhance diagnostic accuracy, optimize triage processes, and improve patient outcomes in critical situations. For instance, AI can assist in identifying life-threatening conditions more rapidly and accurately than traditional methods. However, the implementation of AI in emergency medicine is not without challenges. Key obstacles include regulatory hurdles, concerns about data privacy, and the necessity for robust clinical validation to ensure reliability and safety. Moreover, existing literature reveals gaps regarding long-term outcomes and multidisciplinary perspectives on AI integration. This review aims to provide a comprehensive overview of the current landscape of AI applications in emergency medicine, emphasizing the need for continued research to address these challenges. By identifying potential future research directions, it seeks to promote the responsible and effective incorporation of AI technologies into clinical practice, ultimately enhancing patient care and operational efficiency in emergency settings.
Keywords: Artificial Intelligence, Emergency Medicine, Triage, Diagnostic Accuracy, Machine Learning

Cite This Article:

Please cite this article in press Ahmed Ali Alghamdi et al., Artificial Intelligence In Prehospital Emergency Care: A Literature Review.,Indo Am. J. P. Sci, 2024; 11 (12).

Number of Downloads : 10

References:

1. AbuAlrob, M. A., & Mesraoua, B. (2024). Harnessing artificial intelligence for the diagnosis and treatment of neurological emergencies: a comprehensive review of recent advances and future directions. Frontiers in Neurology, 15, 1485799.
2. Akkus, Z., Cai, J., Boonrod, A., Zeinoddini, A., Weston, A. D., Philbrick, K. A., & Erickson, B. J. (2019). A survey of deep-learning applications in ultrasound: Artificial intelligence–powered ultrasound for improving clinical workflow. Journal of the American College of Radiology, 16(9), 1318-1328.
3. Bin, K. J., Melo, A. A. R., da Rocha, J. G. M. F., de Almeida, R. P., Cobello Junior, V., Maia, F. L., … & Ono, S. K. (2022). The impact of artificial intelligence on waiting time for medical care in an urgent care service for COVID-19: single-center prospective study. JMIR Formative Research, 6(2), e29012.
4. Bitterman, D. S., Aerts, H. J., & Mak, R. H. (2020). Approaching autonomy in medical artificial intelligence. The Lancet Digital Health, 2(9), e447-e449.
5. Blomberg, S. N., Folke, F., Ersbøll, A. K., Christensen, H. C., Torp-Pedersen, C., Sayre, M. R., … & Lippert, F. K. (2019). Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation, 138, 322-329.
6. Chang, H., & Cha, W. C. (2022). Artificial intelligence decision points in an emergency department. Clinical and experimental emergency medicine, 9(3), 165.
7. Chen, M., & Decary, M. (2020, January). Artificial intelligence in healthcare: An essential guide for health leaders. In Healthcare management forum (Vol. 33, No. 1, pp. 10-18). Sage CA: Los Angeles, CA: SAGE Publications.
8. El-Bouri, R., Eyre, D. W., Watkinson, P., Zhu, T., & Clifton, D. A. (2020). Hospital admission location prediction via deep interpretable networks for the year-round improvement of emergency patient care. IEEE Journal of Biomedical and Health Informatics, 25(1), 289-300.
9. Farahmand, S., Shabestari, O., Pakrah, M., Hossein-Nejad, H., Arbab, M., & Bagheri-Hariri, S. (2017). Artificial intelligence-based triage for patients with acute abdominal pain in emergency department; a diagnostic accuracy study. Advanced Journal of Emergency Medicine, 1(1).
10. Fernandes, M., Mendes, R., Vieira, S. M., Leite, F., Palos, C., Johnson, A., … & Celi, L. A. (2020). Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing. PLoS One, 15(4), e0230876.
11. Forberg, J. L., Green, M., Björk, J., Ohlsson, M., Edenbrandt, L., Öhlin, H., & Ekelund, U. (2009). In search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department. Journal of electrocardiology, 42(1), 58-63.
12. Fu, T., Viswanathan, V., Attia, A., Zerbib-Attal, E., Kosaraju, V., Barger, R., … & Faraji, N. (2024). Assessing the Potential of a Deep Learning Tool to Improve Fracture Detection by Radiologists and Emergency Physicians on Extremity Radiographs. Academic Radiology, 31(5), 1989-1999.
13. Gao, X., Lv, Q., & Hou, S. (2023). Progress in the application of portable ultrasound combined with artificial intelligence in pre-hospital emergency and disaster sites. Diagnostics, 13(21), 3388.
14. Hwang, E. J., Nam, J. G., Lim, W. H., Park, S. J., Jeong, Y. S., Kang, J. H., … & Park, C. M. (2019). Deep learning for chest radiograph diagnosis in the emergency department. Radiology, 293(3), 573-580.
15. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4).
16. Kim, D., You, S., So, S., Lee, J., Yook, S., Jang, D. P., … & Park, H. K. (2018). A data-driven artificial intelligence model for remote triage in the prehospital environment. PloS one, 13(10), e0206006.
17. Kirubarajan, A., Taher, A., Khan, S., & Masood, S. (2020). Artificial intelligence in emergency medicine: a scoping review. Journal of the American College of Emergency Physicians Open, 1(6), 1691-1702.
18. Kirubarajan, A., Taher, A., Khan, S., & Masood, S. (2020). Artificial intelligence in emergency medicine: a scoping review. Journal of the American College of Emergency Physicians Open, 1(6), 1691-1702.
19. Kirubarajan, A., Taher, A., Khan, S., & Masood, S. (2020). Artificial intelligence in emergency medicine: a scoping review. Journal of the American College of Emergency Physicians Open, 1(6), 1691-1702.
20. Langlotz, C. P. (2019). Will artificial intelligence replace radiologists?. Radiology: Artificial Intelligence, 1(3), e190058.
21. Li, J., Bu, Y., Lu, S., Pang, H., Luo, C., Liu, Y., & Qian, L. (2021). Development of a deep learning–based model for diagnosing breast nodules with ultrasound. Journal of ultrasound in medicine, 40(3), 513-520.
22. Ni, Y., Kennebeck, S., Dexheimer, J. W., McAneney, C. M., Tang, H., Lingren, T., … & Solti, I. (2015). Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. Journal of the American Medical Informatics Association, 22(1), 166-178.
23. Piliuk, K., & Tomforde, S. (2023). Artificial Intelligence in Emergency Medicine. A Systematic Literature Review. International Journal of Medical Informatics, 105274.
24. Preiksaitis, C., Ashenburg, N., Bunney, G., Chu, A., Kabeer, R., Riley, F., … & Rose, C. (2024). The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review. JMIR Medical Informatics, 12, e53787.
25. Pruitt, P., Naidech, A., Van Ornam, J., Borczuk, P., & Thompson, W. (2019). A natural language processing algorithm to extract characteristics of subdural hematoma from head CT reports. Emergency Radiology, 26, 301-306.
26. Shamout, F. E., Shen, Y., Wu, N., Kaku, A., Park, J., Makino, T., … & Geras, K. J. (2021). An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department. NPJ digital medicine, 4(1), 80.
27. Shuaib, A., Arian, H., & Shuaib, A. (2020). The increasing role of artificial intelligence in health care: will robots replace doctors in the future?. International journal of general medicine, 891-896.
28. Toy, J., Warren, J., Wilhelm, K., Putnam, B., Whitfield, D., Gausche‐Hill, M., … & Goolsby, C. (2024). Use of artificial intelligence to support prehospital traumatic injury care: A scoping review. Journal of the American College of Emergency Physicians Open, 5(5), e13251.
29. Wilson, T. (2017). No longer science fiction, AI and robotics are transforming healthcare. PWC Accessed October, 31, 2021.
30. Zhou, H., Jin, Y., Dai, L., Zhang, M., Qiu, Y., Tian, J., & Zheng, J. (2020). Differential diagnosis of benign and malignant thyroid nodules using deep learning radiomics of thyroid ultrasound images. European Journal of Radiology, 127, 108992.