Volume : 11, Issue : 12, December – 2024
Title:
A REVIEW ON SPECTROSCOPIC TECHNIQUES FOR THE SKIN CANCER DETECTION
Authors :
S. Poojitha*, K. Navyaja, M. Gurava Reddy, Dr. K. Venu Gopal
Abstract :
The most prevalent kind of cancer in the world, skin cancer is caused by aberrant skin cell development. Successful therapy can result from early discovery. Unrepaired DNA damage in skin cells, frequently brought on by exposure to ultraviolet (UV) radiation, is the main cause of this disorder. The two most serious types of skin cancer are non-melanoma skin cancer (NMSC) and malignant melanoma (MM). Skin cancer can be detected using a range of commercial diagnostic instruments and supplementary techniques. A visual inspection of the skin lesions usually initiates the clinical diagnosis. By utilizing the spectrum characteristics of tissues, a number of sophisticated spectroscopic methods have been created to help with the diagnosis of skin cancer. The following are notable techniques: Fluorescence Spectroscopy, Diffuse Reflectance Spectroscopy (DRS), Terahertz Spectroscopy, Raman Spectroscopy, Multi-Spectral Imaging, Hyperspectral Imaging, and Elastic-Scattering Spectroscopy. Raman spectroscopy is one of these that has a lot of potential for non-invasively diagnosing non- melanoma skin cancer (NMSC). Several spectroscopic techniques for identifying skin cancer will be reviewed. In this review, we go over the use of fluorescence, raman, terahertz, hyperspectral and elastic imaging methods in cancer research.
KEY WORDS: skin cancer, hyper spectral imaging, melanoma, skin lesions, spectrograph.
Cite This Article:
Please cite this article in press S. Poojitha et al., A Review On Spectroscopic Techniques For The Skin Cancer Detection.,Indo Am. J. P. Sci, 2024; 11 (12).
Number of Downloads : 10
References:
1. V. Yannas Regeneration of skin Tissue and Organ Regeneration in Adults, Springer New York, New York, NY (2001), pp. 89-136,
2. Vracko Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structureAm. J. Pathol., 77 (1974), pp. 314-346
3. G.K. Menon, L. Dryer, R. Kalafsky Approaches to the development of cosmetic products to counter the effects of skin aging Skin Aging Handb. (2009), pp. 265-290,
4. M.L. Usui, J.N. Mansbridge, W.G. Carter, M. Fujita, J.E. Olerud Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds J. Histochem. Cytochem., 56 (2008), pp. 687-696,
5. B. Ter Horst, G. Chouhan, N.S. Moiemen, L.M. GroverAdvances in keratinocyte delivery in burn wound care Adv. Drug Delivery. Rev., 123 (2018), pp. 18- 32,
23 A. Muroyama, T. LechlerPolarity and stratification of the epidermis Semin. Cell Dev. Biol.,(2012), pp. 890-896,
6. L. BonettaInteractome under construction Nature, 468 (2010) ,
7. T.M. Brown, K. Krishnamurthy Histology, DermisStatPearls Publishing (2019) Available at: http://www.ncbi.nlm.nih.gov/pubmed/30570967 (Accessed 3 July 2019
8. M.M. Smith, J. Melrose Proteoglycans in normal and healing skin Adv. Wound 4 (2015),
pp. 152-173, Jemec G., Dermatologic ultrasound with clinical and histologic correlations, Springer Science & Business Media, 2013.
9. Didona D. Paolino G. Bottoni U. Cantisani C. Biomedicines. 2018; 6:6. doe: 10.3390/biomedicines6010006 .
10. Rubin A. I. Chen E. H. Ratner D. N. Engl. J. Med. 2005;353:2262–2269. doe: 10.1056/NEJMra044151.
11. Bratchenko I. A. Sherendak V. P. Myakinin O. O. Artemyev D. N. Moryatov A. A. Borisova E. Avramov L. Zherdeva L. A. Orlov A. E. Kozlov S. V. J. Biomed. Photonics. Eng. 2018:010301. doe: 10.18287/JBPE17.04.01030
12. Borisova E., Genova-Hristova T., Troyanova P., Pavlova E., Terziev I., Semyachkina- Glushkovskaya O., Lomova M., Genina E., Stanciu G. and Tranca D., Multispectral detection of cutaneous lesions using spectroscopy and microscopy approaches, Photonics in Dermatology and Plastic Surgery 2018, SPIE BiOS, San Francisco,
13. California, United States, 2018, Proceedings vol. 10467, 104670M, 10.1117/12.2289119.
14. Sigurdsson S. Philipsen P. A. Hansen L. K. Larsen J. Giudecca M. Wulf H.-C. IEEE Trans. Biomed. Eng. 2004; 51:1784–1793. doe: 10.1109/TBME.2004.831538.
15. Sandby-Møller J. Poulsen T. Wulf H. C. Photochem. Photobiol. 2003; 77:616– 62doi10.1562/0031-8655(2003)077<0616: IOETPA>2.0.CO;2.
16. Woodward R. Wallace V. Arnone D. Linfield E. Pepper M. J. Biol. Phys. 2003 29:257–
259. doi: 10.1023/A:1024409329416.
17. Kapsokalyvas D. Bruscino N. Alfieri D. de Giorgi V. Cannarozzo G. Cicchi R. Massi D. Pimpinelli N. Pavone F. S. Opt. Express. 2013; 21:4826–4840. doi: 10.1364/OE.21.004826.
18. Diebele I., Kuzmina I., Kapostinsh J., Derjabo A. and Spigulis J., Melanoma-nevus differentiation by multispectral imaging, European Conference on Biomedical Optics 2011, Munich, Germany, 22–26 May 2011, ISBN: 9780819486844, 10.1364/ECBO.2011.80872G.
19. Kuzmina I., Diebele I., Valeine L., Jakovels D., Kempele A., Kapostinsh J. and Spigulis J., Multi-spectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial, Photonic Therapeutics and Diagnostics VII, SPIE BiOS, San Francisco, California, United States, 2011, Proceedings vol. 7883, 788312, 10.1117/12.887207
20. Calin M. A. Parasca S. V. Savastru R. Calin M. R. Dontu S. J. Cancer Res. Clin. Oncol. 2013;139:1083–1104. doi: 10.1007/s00432-013-1423-3.