Volume : 11, Issue : 12, December – 2024
Title:
A REVIEW OF TARGETTED DRUG DELIVERY SYSTEMS –
A NEW ERA OF DRUG CARRIERS IN CANCER THERAPY
Authors :
Pasam Jyothirmayi, A.Anusha, Dr.N.Srinivasarao, Y.Nandini, A.Kavya, K.Jayalakshmi
Abstract :
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting.nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance.Several drug-delivery systems have been reported on and often successfully applied in cancer therapyTherapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs) .
Cite This Article:
Please cite this article in press Pasam Jyothirmayi et al., A Review Of Targetted Drug Delivery Systems – A New Era Of Drug Carriers In Cancer Therapy.,Indo Am. J. P. Sci, 2024; 11 (12).
Number of Downloads : 10
References:
1.Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. [PubMed] [CrossRef] [Google Scholar]
2.Sonnenschein C., Soto A.M. Over a century of cancer research: Inconvenient truths and promising leads. PLoS Biol. 2020;18:e3000670. doi: 10.1371/journal.
3.Citation: Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J and Shao A (2020) Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 7:193. doi: 10.3389/fmolb.2020.001
4.(Zitvogel et al., 2008Zhang, L., Chan, J. M., Gu, F. X., Rhee, J. W., Wang, A. Z., Radovic-Moreno, A. F., et al. (2008). Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2, 1696–1702. doi: 10.1021/nn800275r).
5..Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., et al. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 190, 64–83. doi: 10.1016/j.imlet.2017.07.015
6.Viktorsson, K., Lewensohn, R., and Zhivotovsky, B. (2005). Apoptotic pathways and therapy resistance in human malignancies. Adv. Cancer Res. 94, 143–196. doi: 10.1016/s0065-230x(05)94004-9
7.S. (2016). PZylberberg, C., and Matosevic, S. (2016). Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 23, 3319–3329. doi: 10.1080/10717544.2016.1177136harmaceutical liposomal drug delivery: a review of new dconsistselivery systems and a look at the regulatory landscape. Drug Deliv. 23, 3319–3329. doi: 10.1080/10717544.2016.1177136
9..Cagel, M., Tesan, F. C., Bernabeu, E., Salgueiro, M. J., Zubillaga, M. B., Moretton, M. A., et al. (2017). Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur. J. Pharm. Biopharm. 113, 211–228. doi: 10.1016/j.ejpb.2016.12.019
10.Jiang, Y., Huo, S., Hardie, J., Liang, X. J., and Rotello, V. M. (2016). Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert. Opin. Drug Deliv. 13, 547–559. doi: 10.1517/17425247.2016.1134486
11.Mesoporous silica nanoparticle carriers are a type of SNPs which are suitable for drug delivery (Almeida et al., 2014; Gao et al., 2019).
12.Mottaghitalab, F., Farokhi, M., Fatahi, Y., Atyabi, F., and Dinarvand, R. (2019). New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment. J. Control Release 295, 250–267. doi: 10.1016/j.jconrel.2019.01.009
13.[16]Majumdar, Sumit; Siahaan, Teruna J. (May 2012). “Peptide-mediated targeted drug delivery: TARGETED DRUG DELIVERY”. Medicinal Research Reviews. 32 (3): 637–658.
14.Alley, Stephen C; Okeley, Nicole M; Senter, Peter D (August 2010). “Antibody–drug conjugates: targeted drug delivery for cancer”. Current Opinion in Chemical Biology. 14 (4): 529–537.
15Torchilin, VP “Multifunctional Nanocarriers.” Adv Drug Deliv Rev 2006 Dec; 58 (14)
16.Cho, Kwangjae; Wang, Xu; Nie, Shuming; Chen, Zhuo Georgia; Shin, Dong M. (2008-03-01). “Therapeutic nanoparticles for drug delivery in cancer”. Clinical Cancer Research.
17.Mo, Ran; Gu, Zhen (2016-06-01). “Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery”. Materials Today.]
18.Wang, Yanfei; Kohane, Daniel S. (2017-05-09). “External triggering and triggered targeting strategies for drug delivery”. Nature Reviews Materials.
19 Schroeder, Avi; Honen, Reuma; Turjeman, Keren; Gabizon, Alberto; Kost, Joseph; Barenholz, Yechezkel (2009-07-01). “Ultrasound triggered release of cisplatin from liposomes in murine tumors”. Journal of Controlled Release.
20.Pili, R.; Rosenthal, M. A.; Mainwaring, P. N.; Van Hazel, G.; Srinivas, S.; Dreicer, R.; Goel, S.; Leach, J.; et al. (2010). “Phase II Study on the Addition of ASA404 (Vadimezan; 5,6-Dimethylxanthenone-4-Acetic Acid) to Docetaxel in CRMPC”. Clinical Cancer Research
21.Homsi, J.; Simon, G. R.; Garrett, C. R.; Springett, G.; De Conti, R.; Chiappori, A. A.; Munster, P. N.; Burton, M. K.; et al. (2007). “Phase I Trial of Poly-L-Glutamate Camptothecin (CT-2106) Administered Weekly in Patients with Advanced Solid Malignancies”. Clinical Cancer Research
22.Vogel, V. G.; Costantino, JP; Wickerham, DL; Cronin, WM; Cecchini, RS; Atkins, JN; Bevers, TB; Fehrenbacher, L; et al. (2006). “Effects of Tamoxifen vs Raloxifene on the Risk of Developing Invasive Breast Cancer and Other Disease Outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 Trial”. JAMA.
23.Zhang, Fangyu; Li, Zhengxing; Duan, Yaou; Abbas, Amal; Mundaca-Uribe, Rodolfo; Yin, Lu; Luan, Hao; Gao, Weiwei; Fang, Ronnie H.; Zhang, Liangfang; Wang, Joseph (28 September 2022). “Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule”. Science Robotics. 7 (70): eabo4160.
24.Sagnella, S.; Drummond, C. Drug Delivery: A Nanomedicine Approach. Australian Biochemist. [Online] 2012, 43, 5–8, 20. The Australian Society for Biochemistry and Molecular Biology.
25.Mills JK, Needham D. Targeted drug delivery. Exp Opin Ther Patents. 1999;9(11):1499–1513. doi: 10.1517/13543776.9.11.1499
26Medscape from WebMD [Internet]. New York: WebMD LLC; 1994-2015. Liposomes as Drug Delivery Systems for the Treatment of TB; 2011 [cited 2015 May 8] Available from:
27.Gullotti, E.; Yeo, Y. Extracellularly Activated Nanocarriers: A New Paradigm of Tumor Targeted Drug Delivery. Mol. Pharm., [Online] 2009, 6, 1041-1051. ACS Publications.
28Medscape from WebMD [Internet]. New York: WebMD LLC; 1994-2015. Liposomes as Drug Delivery Systems for the Treatment of TB; 2011.
guidelines and standardized protocols. J. Pharm. Biomed. Anal. 2023, 236, 115751.
29.Düzgüneş N., Gregoriadis G. Methods in Enzymology. Volume 391. Academic Press; Cambridge, MA, USA: 2005. Introduction: The Origins of Liposomes: Alec Bangham at Babraham; pp. 1–3.
30.Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. 2014;53:12320–12364
31.Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9
32.Sahoo S.K., Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today. 2003;8:1112–1120.
33.A.D. Bangham, M.W. Hill, N. Miller, Preparation and use of liposomes as models of biological membranes, Methods Member. Biol., Springer1974, pp. 1-68.
34.Bangham A. A correlation between surface charge and coagulant action of phospholipids. Nature. 1961;192: 1197–1198.
35.Wu H., Yu M., Miao Y., He S., Dai Z., Song W., Liu Y., Song S., Ahmad E., Wang D., Gan Y. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm. Sin. B. 2019;9: 858–870.
36.Klibanov A.L., Maruyama K., Beckerleg A.M., Torchilin V.P., Huang L. Activity of amphipathic poly (ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim. Biophys. Acta Biomemb1991;1062:142–148.
37.San H., Yang Z.-Y., Pompili V.J., Jaffe M.L., Plautz G.E., Xu L., Felgner J.H., Wheeler C.J., Felgner P.L., Gao X. Safety and short-term toxicity of a novel cationic lipid formulation for human gene therapy. Hum. Gene Ther. 1993;4:781–788.
38.Youn P., Chen Y., Furgeson D.Y. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol. Pharm. 2014;11:486
39.Rangger C., Helbok A., von Guggenberg E., Sosabowski J., Radolf T., Prassl R., Andreae F., Thurner G.C., Haubner R., Decristoforo C. Influence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles. Int. J. Nanomed. 2012; 7:5889.
40Vaage J., Donovan D., Mayhew E., Abra R., Huang A. Therapy of human ovarian carcinoma xenografts using doxorubicin encapsulated in sterically stabilized liposomes. Cancer. 1993; 72:3671–3675
41.Allen T.M., Cullis P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 2013; 65:36–48.
42..Lee Y., Thompson D.H. Vol. 9. Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017. (Stimuli-responsive Liposomes for Drug Delivery).
43.Katsuji S., Nobuki K., Katsuyuki Y., Ryo S., Kazuo M. IEEE Ultrasonics Symposium; 2008. Characterization of Bubble Liposomes by Measurements of Ultrasound Attenuation: Effects of Shell Materials, 2008; pp. 1675–1678
44.A. Nagayasu , K. Uchiyama Land H. Kiwada , Adv. Drug Delivery Rev., 1999, 40 , 75 —87
45.Longmire , P. L. Choyke and H. Kobayashi , Nanomedicine, 2008, 3 , 703 —717
46.S. Chen , J. Zheng , L. Li and S. Jiang , J. Am. Chem. Soc., 2005, 127 , 14473 —14478
47.E. Blanco , H. Shen and M. Ferrari , Nat. Biotechnol., 2015, 33 , 941 —951
48.F. Wang and J. Liu , Nanoscale, 2015, 7 , 15599 —15604
50.J. Bompard , A. Rosso , L. Brizuela , S. Mebarek , L. J. Blum , A.-M. Trunfio-Sfarghiu , G. Lollo , T. Granjon , A. s. Girard-Egrot and O. Maniti , Langmuir, 2020, 36 , 5134 —5144
51.m Z. Dai , M. Yu , X. Yi , Z. Wu , F. Tian , Y. Miao , W. Song , S. He , E. Ahmad , S. Guo , C. Zhu , X. Zhang , Y. Li , X. Shi , R. Wang and Y. Gan , ACS Nano, 2019, 13 , 7676 —7689
52.93L. V. Chernomordik and M. M. Kozlov , Nat. Struct. Mol. Biol., 2008, 15 , 675 —683 CrossRef
53.J. Yang , J. Tu , G. E. M. Lamers , R. C. L. Olsthoorn and A. Kros , Adv. Healthcare Mater., 2017, 6 , 1700759
54..Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar
55.Borys, N.; Dewhirst, M.W. Drug Development of Lyso-Thermosensitive Liposomal Doxorubicin: Combining Hyperthermia and Thermosensitive Drug Delivery. Adv. Drug Deliv. Rev. 2021, 178, 113985.
56.Lai, X.; Liu, X.L.; Pan, H.; Zhu, M.H.; Long, M.; Yuan, Y.; Zhang, Z.; Dong, X.; Lu, Q.; Sun, P.; et al. Light-Triggered Efficient Sequential Drug Delivery of Biomimetic Nanosystem for Multimodal Chemo-, Antiangiogenic, and Anti-MDSC Therapy in Melanoma. Adv. Mater. 2022, 34, e2106682. Available online: http://onlinelibrary.wiley.com.zzulib.vpn358.com/doi/10.1002/adma.202106682 (accessed on 11 November 2022)
57.Ahmed, K.S.; Hussein, S.A.; Ali, A.H.; Korma, S.A.; Lipeng, Q.; Jinghua, C. Liposome: Composition, Characterisation, Preparation, and Recent Innovation in Clinical Applications. J. Drug Target. 2019, 27, 742–761.
58.Allen TM. Liposomal drug formulations: Rationale for development and what we can expect for the future. Drugs. 1998;56:747–56.
59.Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: An overview. Int J Pharm. 2004;269:1–14.
60.Szoka F, Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes) Annu Rev Biophys Bioeng. 1980;9:467–508.
61.Brewer JM, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology. 1992;75:570–5.
62.T. Lin, Q. Fang, D. Peng, X. Huang, T. Zhu, Q. Luo, K. Zhou, W. ChenDrug Deliv., 20 (2013),
63.V. Sharma, S. Anandhakumar, M. Sasidharan Mater. Sci. Eng. C, 56 (2015), p. 393
64.R. Khan, R. IrchhaiyaJ. Pharm. Investig., 46 (2016), p. 195
65P. Nakhaei, R. Margiana, D.O. Bokov, W.K. Abdelbasset, M.A.J. Kouhbanani, R.S. Varma, F. Marofi, M. Jarahian, N. BeheshtkhooFront. Bioeng. Biotechnol., 9 (2021)
66S. Chen, S. Hanning, J. Falconer, M. Locke, J. WenEur. J. Pharm. Biopharm., 144 (2019), p. 18
67.C. Joy, S.K. Nair, K.K. Kumar, B. DineshkumarJ. Drug Deliv. Therapeut., 11 (2021), p. 166
68.A. Sharma, L. Kumar, P. Kumar, N. Prasad, V. RastogiJ. Drug Deliv. Therapeut., 9 (2019), p. 635
69M. Moghtaderi, K. Sedaghatnia, M. Bourbour, M. Fatemizadeh, Z. Salehi Moghaddam, F. Hejabi, F. Heidari, S. Quazi, B. Farasati Far
70.Niosomes: a novel targeted drug delivery system for cancerMedical Oncology, 39 (12) (2022), p. 240
71L. Yeo, C. Chawmdpi.comLK Yeo, CS Chaw, AA ElkordyPharmaceuticals, 2019•mdpi.ComA. E.- Pharmaceuticals, undefined (2019)(n.d)
72.] Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986;38:502–
73Khandare JN, Madhavi G, Tamhankar BM. Niosomes novel drug delivery system. East Pharmacist. 1994;37:61–4.
74.Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as delivery system for the anti-leishmanial drug,sodium stibogluconate. J Pharm Pharmacol1986;38:502
75V. Mokale. J. Nanosci. Res. Reports. SRC
76K. Kumar, A.K. Rai pharmazie, 67(2012) 10.1691/ph.2012.1164
77D. Pando M. Matos, G. Gutiérrez, Pazos.colloids.surf.,B,128(2015) 10.1016/j.colsurfb.2015.02.037
78Nanoparticles as drug delivery systems,Pharmacological Reports, Volume 64, Issue 5,2012,Pages 1020-1037,ISSN 1734-1140
79Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2017. p. 32019.
80.Pan K, Zhong Q. Organic nanoparticles in foods: fabrication, characterization, and utilization. Annu Rev Food Sci Technol. 2016;7:245–66.
81.Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2017. p. 32019.
82Moreno-Vega A-I, Gomez-Quintero T, Nunez-Anita R-E, Acosta-Torres L-S, Castaño V. Polymeric and ceramic nanoparticles in biomedical applications. J Nanotechnol. 2012.
83.Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79.
84Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2017. p. 32019.
85Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem. 1998;22(11):1179–201.
86.Shilpi JA, Tripathi S, Mishra SK, Mubarak MS. Targeting cancer cells with nanotherapeutics and nanodiagnostics: current status and future perspectives. Semin Cancer Biol 2020;69:52–68.
87.Horst MF, Coral DF, Fernandez van Raap MB, Alvarez M, Lassalle V. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater Sci Eng C Mater Biol Appl. 2017;74:443–50
88Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev. 2010;39(11):4234–43.
89.J k. anopart Res. 2009;11:77–89. doi: 10.1007/s11051-008-9446-4.
90Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanopsensitivityarticle dispersions for toxicological studies
91Yonggang L, Yang Z, Yang L (2021) Uncertainty and analysis of properties of phase change micro/nanoparticles for thermal protection during cryosurgery|Lv, Yonggang; Zou, Yang; Yang, Li | download. Booksc.eu. Retrieved 30 July 2021, from
92.Xia Y, Rao L, Yao H., Wang Z, Ning P, Chen X (2020) Engineering macrophages for cancer immunotherapy and drug delivery. 10.1002/adma.202
93.Ecker, D.M.; Jones, S.D.; Levine, H.L. The therapeutic monoclonal antibody market. MAbs 2015, 7, 9–14.
94onoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507.
95.Keizer, R.J.; Huitema, A.D.R.; Schellens, J.H.M.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507.
96.Gebauer, M.; Skerra, A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 2009, 13, 245–255.
97Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012 Oct;12(5):615-22.
98Posner J, Barrington P, Brier T, Datta-Mannan A. Monoclonal Antibodies: Past, Present and Future. Handb Exp Pharmacol. 2019;260:81-141.
99Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019 Dec;7(6):e00535.
100kaittanis C., Santra S., Perez J.M. Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J. Am. Chem. Soc. 2009;131(35):12780–12791.
101k.M., Bandyopadhyay A., Blum J.S., Fahmy T.M. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv. Drug Deliv. Rev. 2010;62(4–5):378–393
102.Zhao X., Hilliard L.R., Mechery S.J., Wang Y., Bagwe R.P., Jin S., Tan W. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. USA. 2004;101(42):15027–15032
103.Y.C., Jin R., Mirkin C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002;297:1536–1540.