Volume : 11, Issue : 12, December – 2024
Title:
THE FUTURE OF AI IN PREHOSPITAL EMERGENCY CARE: A REVIEW OF EMERGING TECHNOLOGIES AND TRENDS
Authors :
Hezam Sarrah Saeed Al-Shehri, Taha Hassan Ali Alrishi, Abdullah Mari M Al Shehri, Kalaf Ahmed Al Asiri, Ibrahim Ali AL Fodeili, Mohammed Ali Alfudily, Hasan Naser Mofrih Asiry, Dafer Saeed Dafer Alshahri, Mohmed Hasan Alshahri
Abstract :
The integration of artificial intelligence (AI) into prehospital emergency care is significantly transforming patient management and enhancing outcomes within emergency medical services (EMS). This literature review explores emerging AI technologies and trends, focusing on their diverse applications, such as improving decision-making, optimizing triage processes, and enabling remote diagnosis. While the potential benefits of AI are substantial, several challenges remain, including variability in technology adoption, concerns about data reliability, and the need for adequate training among emergency personnel. These challenges highlight the critical need for comprehensive frameworks that facilitate the effective integration of AI into prehospital care settings. This review aims to provide valuable insights into the transformative role of AI in prehospital emergency care and outlines recommendations for future research and implementation strategies. By addressing these factors, we can better harness AI’s potential to improve patient outcomes and operational efficiency in EMS.
Keywords: Artificial Intelligence, Prehospital Emergency Care, Emergency Medical Services, Triage Optimization, Decision Support Systems
Cite This Article:
Please cite this article in press Hezam Sarrah saeed Al-shehri et al., The Future Of Ai In Prehospital Emergency Care: A Review Of Emerging Technologies And Trends.,Indo Am. J. P. Sci, 2024; 11 (12).
Number of Downloads : 10
References:
1. Ahmadzadeh, B., Patey, C., Hurley, O., Knight, J., Norman, P., Farrell, A., Czarnuch, S., & Asghari, S. (2024). Applications of artificial intelligence in emergency departments to improve wait times: Protocol for an integrative living review. JMIR Research Protocols, 13,
2. Aqel, S., Syaj, S., Al-Bzour, A., Abuzanouneh, F., Al-Bzour, N., & Ahmad, J. (2023). Artificial Intelligence and Machine Learning Applications in Sudden Cardiac Arrest Prediction and Management: A Comprehensive Review. Current Cardiology Reports, 25, 1391–1396.
3. Chan, S. L., Lee, J. W., Ong, M. E. H., Siddiqui, F. J., Graves, N., Ho, A. F. W., & Liu, N. (2023). Implementation of Prediction Models in the Emergency Department from an Implementation Science Perspective—Determinants, Outcomes, and Real-World Impact: A Scoping Review. Annals of Emergency Medicine, 82(1), 22-36.
4. Chan, S. L., Lee, J. W., Ong, M. E. H., Siddiqui, F. J., Graves, N., Ho, A. F. W., & Liu, N. (2023). Implementation of prediction models in the emergency department from an implementation science perspective—determinants, outcomes, and real-world impact: A scoping review. Annals of Emergency Medicine, 82, 22-36.
5. Chee, M. L., Chee, M. L., Huang, H., Mazzochi, K., Taylor, K., Wang, H., Feng, M., Ho, A. F. W., Siddiqui, F. J., Ong, M. E. H., & Liu, N. (2023). Artificial intelligence and machine learning in prehospital emergency care: A scoping review. iScience, 26, 107407.
6. Chen, J., Wu, X., Li, M., Liu, L., Zhong, L., Xiao, J., Lou, B., Zhong, X., Chen, Y., Huang, W., Meng, X., Gui, Y., Chen, M., Wang, D., Dongye, M., Zhang, X., Cheung, C. Y., Lai, I. F., Yan, H., Lin, X., Zheng, Y., & Lin, H. (2023). EE-Explorer: A multimodal artificial intelligence system for eye emergency triage and primary diagnosis. American Journal of Ophthalmology, 252, 253–264.
7. Chenais, G., Lagarde, E., & Gil-Jardiné, C. (2023). Artificial Intelligence in emergency medicine: Viewpoint of current applications and foreseeable opportunities and challenges. Journal of Medical Internet Research, 25, e40031.
8. Chiasakul, T., Lam, B. D., McNichol, M., Robertson, W., Rosovsky, R. P., Lake, L., Vlachos, I. S., Adamski, A., Reyes, N., Abe, K., Zwicker, J. I., & Patell, R. (2023). Artificial intelligence in the prediction of venous thromboembolism: A systematic review and pooled analysis. European Journal of Haematology, 111(6), 951–962.
9. Cimino, J., & Braun, C. (2023). Clinical Research in Prehospital Care: Current and Future Challenges. Clinical Practice, 13, 1266–1285.
10. de Koning, E., van der Haas, Y., Saguna, S., Stoop, E., Bosch, J., Beeres, S., Schalij, M., & Boogers, M. (2023). AI algorithm to predict acute coronary syndrome in prehospital cardiac care: Retrospective cohort study. JMIR Cardio, 7, e51375.
11. Hedderson, D., Courtney, K. L., Monkman, H., & Blanchard, I. E. (2024). Speech recognition technology in prehospital documentation: A scoping review. International Journal of Medical Informatics, 105662.
12. Jentzer, J. C., Kashou, A. H., & Murphree, D. H. (2023). Clinical applications of artificial intelligence and machine learning in the modern cardiac intensive care unit. Intelligence-Based Medicine, 7, 100089.
13. Kang, D.-Y., Cho, K.-J., Kwon, O., Kwon, J.-M., Jeon, K.-H., Park, H., Lee, Y., Park, J., & Oh, B.-H. (2020). Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 28, 17.
14. Kim, H., Kim, S.-W., Park, E., Kim, J. H., & Chang, H. (2020). The role of fifth-generation mobile technology in prehospital emergency care: An opportunity to support paramedics. Health Policy and Technology, 9(1), 109–114.
15. Lee, J.-T., Hsieh, C.-C., Lin, C.-H., Lin, Y.-J., & Kao, C.-Y. (2021). Prediction of hospitalization using artificial intelligence for urgent patients in the emergency department. Scientific Reports, 11, 19472.
16. Lee, S., Kang, W. S., Kim, D. W., Seo, S. H., Kim, J., Jeong, S. T., Yon, D. K., & Lee, J. (2023). An artificial intelligence model for predicting trauma mortality among emergency department patients in South Korea: Retrospective cohort study. Journal of Medical Internet Research, 25, e49283.
17. Lu, Z.-x., Qian, P., Bi, D., Ye, Z.-w., He, X., Zhao, Y.-h., Su, L., Li, S.-l., & Zhu, Z.-l. (2021). Application of AI and IoT in Clinical Medicine: Summary and Challenges. Current Medical Science, 41(6), 1134-1150.
18. Masoumian Hosseini, M., Masoumian Hosseini, S. T., Qayumi, K., Ahmady, S., & Koohestani, H. R. (2023). The Aspects of Running Artificial Intelligence in Emergency Care: A Scoping Review. Archives of Academic Emergency Medicine, 11(1), e38.
19. Meyer, L. M., Stead, S., Salge, T. O., & Antons, D. (2024). Artificial intelligence in acute care: A systematic review, conceptual synthesis, and research agenda. Technological Forecasting & Social Change, 206, 123568.
20. Murray, N. M., Unberath, M., Hager, G. D., & Hui, F. K. (2019). Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. Journal of NeuroInterventional Surgery, 0, 1–10.
21. Myall, M., Rowsell, A., Lund, S., Turnbull, J., Arber, M., Crouch, R., Pocock, H., Deakin, C., & Richardson, A. (2020). Death and dying in prehospital care: what are the experiences and issues for prehospital practitioners, families and bystanders? A scoping review. BMJ Open, 10, e036925.
22. Peng, H. T., Siddiqui, M. M., Rhind, S. G., Zhang, J., da Luz, L. T., & Beckett, A. (2023). Artificial intelligence and machine learning for hemorrhagic trauma care. Military Medical Research, 10(6).
23. Piliuk, K., & Tomforde, S. (2023). Artificial intelligence in emergency medicine: A systematic literature review. International Journal of Medical Informatics, 180, 105274.
24. Sahoh, B., & Choksuriwong, A. (2023). The role of explainable Artificial Intelligence in high-stakes decision-making systems: A systematic review. Journal of Ambient Intelligence and Humanized Computing, 14, 7827–7843.
25. Shimada, K., Inokuchi, R., Ohigashi, T., Iwagami, M., Tanaka, M., Gosho, M., & Tamiya, N. (2024). Artificial intelligence-assisted interventions for perioperative anesthetic management: A systematic review and meta-analysis. BMC Anesthesiology, 24, 306.
26. Shimada, K., Inokuchi, R., Ohigashi, T., Iwagami, M., Tanaka, M., Gosho, M., & Tamiya, N. (2024). Artificial intelligence-assisted interventions for perioperative anesthetic management: a systematic review and meta-analysis. BMC Anesthesiology, 24, 306.
27. Shlobin, N. A., Baig, A. A., Waqas, M., Patel, T. R., Dossani, R. H., Wilson, M., Cappuzzo, J. M., Siddiqui, A. H., Tutino, V. M., & Levy, E. I. (2022). Artificial Intelligence for Large-Vessel Occlusion Stroke: A Systematic Review. World Neurosurgery, 159, 207–220.e1.
28. Stewart, J. E., Goudie, A., Mukherjee, A., & Dwivedi, G. (2021). Artificial intelligence-enhanced echocardiography in the emergency department. Emergency Medicine Australasia.
29. Toy, J., Bosson, N., Schlesinger, S., Gausche-Hill, M., & Stratton, S. (2023). Artificial intelligence to support out-of-hospital cardiac arrest care: A scoping review. Resuscitation Plus, 16, 100491
30. Toy, J., Warren, J., Wilhelm, K., Putnam, B., Whitfield, D., Gausche-Hill, M., Bosson, N., Donaldson, R., Schlesinger, S., Cheng, T., & Goolsby, C. (2024). Use of artificial intelligence to support prehospital traumatic injury care: A scoping review. JACEP Open, 5, e13251.
31. Weisberg, E. M., Chu, L. C., & Fishman, E. K. (2020). The first use of artificial intelligence (AI) in the ER: triage not diagnosis. Emergency Radiology, 27(4), 361–366.