Volume : 11, Issue : 11, November – 2024

Title:

PLANT REVIEW ON SOLANUM LYCOPERSICUM (Tomato)

Authors :

Boggula Devika, Dr.V. Jayasankar Reddy , Dr. K. Venugopal

Abstract :

Since the majority of tomato varieties in Bangladesh are in hybrid, it is necessary to describe and evaluate morphological variability as a resource for choosing genotype with desirable features in order to generate new varieties. Using development vegetative and fruit features, twenty-two promising tomatoes in bred lines were described twenty-seven morphological trials at the Bangladesh Agricultural Research Institute (BARI) between October 2009 and march 2010. In the study, 21 quantitative and 6 quantitative physio- morphological features exhibited a broad range of variance, whereas 20 traits shown significant variation among genotypes. There were one or more unique characteristics that might be utilized to identify each genotype. The morphological information for the fruits green shoulder trips, hypocotyl colour, hypocotyl pubescence, leaf type and fruit cross-sectional shape revealed useful diagnostic features that can be utilized to distinguish between the genotypes because they were prevalent in the study. A single morphological characteristic, however makes it challenging to identify every genotype; yet it can improve tomato production diversity and quality. [1,2]

Cite This Article:

Please cite this article in press Boggula Devika et al., Plant Review On Solanum Lycopersicum (Tomato)., Indo Am. J. P. Sci, 2024; 11 (11).

Number of Downloads : 10

References:

1) S.G. Agong, S. Schittenhelm, W. Fried Genotypic variation of Kenyan tomato (Lycopersicon esculentum Mill.) germplasm J. Food Tech. Africa, 6 (2001), pp. 13-17
View in Scopus Google Scholar
2) Anonymous, 1995. Agro-climatological data. Agromet Division, Bangladesh Meteorological Department, Joydebpur, Gazipur-1701, pp. 35–65. Google Scholar
3) Bhowmik D., Kumar K.S., Paswan S., Srivastava S. Tomato-A Natural Medicine and Its Health Benefits. J. Pharmacognosy. Phytochem. 2012; 1:33–43.[Google Scholar]
4) Toor R.K., Lister C.E., Savage G.P. Antioxidant Activities of New Zealand-Grown Tomatoes. Int. J. Food Sci. Nutr. 2005; 56:597–605. Doi: 10.1080/09637480500490400.
[DOI] [PubMed] [Google Scholar]
5) Molecular phylogenetic analyses have established that the formerly segregate genera Lycopersicon, Cyphomandra, Normania, and Triguera are nested within Solanum, and all species of these four genera have been transferred to Solanum.
6) Benson J, McDougald R. Hortus Third: A concise dictionary of plants cultivated in the United States and Canada. New York: Wiley; c2003.
7) Rick CM, Fobes JF, Holle M. Genetic variation in tomato populations. In: Hawkes JG, Lester RN, kelding AD, eds. The Biology and Taxonomy of the Solanaceae. London: Academic Press; c1979. p. 589-635.
8) Lin, Tao; Zhu, Guangtao; Zhang, Junhong; Xu, Xiangyang; Yu, Qinghui; et al. (12 October 2014). “Genomic analyses provide insights into the history of tomato breeding”. Nature Genetics. 46 (11): 1220–1226. doi:10.1038/ng.3117. PMID 25305757.
9) Estabrook, Barry (22 July 2015). “Why Is This Wild, Pea-Sized Tomato So Important?”. Smithsonian Journeys Quarterly. Retrieved 13 January 2020.
10) Razifard, Hamid; et al. (2020). “Genomic evidence for complex domestication history of the cultivated tomato in Latin America” (PDF). Molecular Biology and Evolution. 37 (4): 1118–1132. doi:10.1093/molbev/msz297. PMC 7086179. PMID 31912142.
11) “Tomato”. Encyclopaedia Britannica. 4 January 2018. Retrieved 15 January 2018.
12) A M VarelaA SeifB LöhrR D RiceL W RiceH D Tindall A guide to IPM in tomato production in Eastern and Southern Africa, Varela, A.M., Seif, A. and Löhr, B. 2003. CTA/ICIPE/GTZ. Fruit and vegetable production in warm climates. Rice, R.D., Rice, L.W., Tindall, H.D., 1993: MacMillan press, London. Integrated pest management practices for the production of vegetables, Youdeowei, A. 2004. CTA/GTA/MOFA-PPRSD.
13) Jan 2000 G Stoll Natural Crop Protection in the Tropics, Stoll, G., 2nd Revised Edition. 2000. Marcraf-CTA- Agrecol.
14) Bres C, Petit J, Reynoud N, et al. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. Mol Hortic. 2022; 2:14. https://doi.org/10.1186/s43897-022-00035-y. Article CAS Google Scholar
15) FAO World Food and Agriculture – Statistical Yearbook 2021 (https://www.fao.org/).Google Scholar
16) Jobson E, Roberts R. Genomic structural variation in tomato and its role in plant immunity. Mol Hortic. 2022; 2:7. https://doi.org/10.1186/s43897-022-00029-w.
Article CAS Google Scholar
17) Kevei Z, Ferreira SDS, Casenave CMP, et al. Missense mutation of a class B heat shock factor is responsible for the tomato bushy root-2 phenotype. Mol Hortic. 2022; 2:4. https://doi.org/10.1186/s43897-022-00025-0.
Article CAS Google Scholar
18) Pino LE, Lima JE, Vicente MH, et al. Increased branching independent of strigolactone in cytokinin oxidase 2-overexpressing tomato is mediated by reduced auxin transport. Mol Hortic. 2022; 2:12. https://doi.org/10.1186/s43897-022-00032-1.
Article CAS Google Scholar
19) Angiosperm Phylogeny Group 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2):105-21, doi:10.1111/j.1095-8339.2009.00996x.
20) Blanca, J., Cañizares, J., Cordero, L., Pascual, L., José Diez, M., Nuez, F. 2012. Variation revealed by SNP genotyping and morphology provides in-sight into the origin of the Tomato. PLoS ONE7(10): e48198, http://dx.doi.org/10.1371/journal.pone.0048198.
21) Isah, A.S., Amans, E.B., Odion, E.C., Yusuf, A.A.2014. Growth rate and yield of two Tomato varieties (Lycopersicon esculentum Mill) under green manure and NPK Fertilizer rate Samaru Northern Guinea Savanna. Int. J. Food Sci. Nutr.932759:1-8, http://dx.doi.org/10.1155/2014/932759
22) South Pacific Foods 1995. Green leaves. In: South Pacific Foods Leaflets. South pacific commission, Community Health service 6 leaflet. p. 17.
23) Olaniyi, J.O., Akanbi, W.B., Akande, O.G. 2010.Growth, fruit yield and nutritional quality of tomato varieties. Afr. J. Food Sci. 4(6):398-402, http://www.academicjournals.org/journal/AJFS/article-full-text-pdf/7CAE04424859.
24) Ogwu, M.C., Osawaru, M.E., Aiwansoba, R.O., Iroh, R.N. 2016. Status and Prospects of Vegetables in Africa. Proceedings of NTBA/NSCB Joint biodiversity Conference on MDGs to SDGs: To-ward Sustainable Biodiversity Conservation Nigeria held at university of llorin, Nigeria. pp.47-57.
25) Heiser CB. The Tomato Story: The Remarkable History and Social Influence of the Tomato. University of Illinois Press; 1994.
26) Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst. 1999;91(4): 317-331.DOI:10.1093/jnci/91.4.317
27) Smith J. The Culinary Uses of Tomatoes: A Global Perspective. International Journal of Gastronomy and Food Science. 2010;2(1):45-52.
28) Gupta A, Chen L. Traditional Medicinal Uses of Solanum lycopersicum in Ayurveda and Traditional Chinese Medicine. Journal of Ethnopharmacology 2015; 174:234-245.
29) Kim S, Lee M. Tomato Extracts in Skincare: Traditional Uses and Modern Applications. Journal of Cosmetic Dermatology. 2018;17(3):112-118.
30) Sharma R, Singh S. Traditional Uses of Tomatoes for Eye Health: An Ethnobotanical Review. Journal of Ethnopharmacology. 2016; 189:158-169.
31) Patel K, Mehta N. Traditional Home Remedies Utilizing Tomatoes: A Review. Journal of Traditional Medicine. 2019;6(2):78-85.
32) Jones L, Smith K. The Symbolic Importance of Tomatoes in Cultural Rituals. Cultural Anthropology. 2017;33(2):201-215. 33) Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Rev. 2010;4(8):118-126. doi:10.4103/0973-7847.70902.
34) Wang Y, Chun OK, Song WO. Plasma and dietary antioxidant status as cardiovascular disease risk factors: a review of human studies. Nutrients. 2013;5(8):2969-3004. doi:10.3390/nu5082969
35) Oboh G, Ademiluyi AO, Ogunsuyi OB. Quercetin and its role in chronic diseases. Adv Exp Med Biol. 2016; 929:377-387. doi:10.1007/978-3-319-41342-6_18.
36) Friedman M, Henika PR, Levin CE, Mandrell RE, Kozukue N. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J Food Prot. 2006;69(2):354-361. DOI:10.4315/0362- 028x-69.2.354
37) Rao AV, Agarwal S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr Res. 1999;19(2):305-323. doi:10.1016/S0271-5317(98)00284-9.
38) Rissanen TH, Voutilainen S, Nyyssönen K. Low serum lycopene concentration is associated with an excess incidence of acute coronary events and stroke: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br J Nutr. 2001;85(6):749-754. DOI:10.1079/BJN2001347
38) Etminan M, Takkouche B, Caamaño-Isorna F. The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev. 2004;13(3):340-345. PMID:15006906. 39) Fibiani M, Rebello LP, Ratti C. Effects of processing tomato and its products on health: A review. Eur Food Res Technol. 2014;239(6):905-920. doi:10.1007/s00217-014-2255-7
40) Darvin ME, Sterry W, Lademann J, Patzelt A. Perspective of human skin aging: insights from recent studies. J Dermatol Sci. 2010;58(1):1-7. Doi: 10.1016/j.jdermsci.2010.03.003