Volume : 11, Issue : 11, November – 2024
Title:
CHARACTERIZATION AND PAN-GENOME ANALYSIS OF STREPTOCOCCUS SALIVARIUS
Authors :
Anas Tariq , Maged Al mezgagi, Irum Saleem , Wang Qianqian , Xing Jiangwa*
Abstract :
Background: Streptococcus salivarius plays a pivotal role in maintaining oral and upper respiratory health. It serves as a natural barrier against pathogens and contributes to the equilibrium of the oral microbiome. Their pro-biotic attributes are garnering increasing recognition for their potential to support both oral and respiratory health. Aim: To perform comprehensive analysis of Streptococcus Salivarius genome data, investigating its secondary metabolites, antibiotic resistance genes, and virulence gene variants. Materials and Methods:The genomic sequences of 20 S. Salivarius strains were obtained from the NCBI database. Genome analysis tools, secondary metabolite detection software, and databases for antibiotic resistance and virulence genes were used to examine genomic information. Result:This analysis elucidated the distinctive genomic attributes of FDAARGOS_1045, encompassing its varied secondary metabolism gene clusters, singular phylogenetic placement, and substantial number of unique genes. The distinctive characteristics exhibited by this strain suggest the potential presence of novel bio synthetic pathways and potentially valuable metabolites. These findings merit further investigation to explore potential biotechnological applications and to enhance our understanding of bacterial diversity within this species.Conclusion:It demonstrates the relationship between pan-genome, core genome, and gene count. This research enhances our understanding of S. Salivarius and provides a theoretical foundation for its medical applications. Further investigation of FDAARGOS_1045 is necessary to gain a more comprehensive understanding of S. Salivarius.
Keywords: Streptococcus salivarius, pan-genome, antimicrobial resistance genes, virulence genes, genome annotation, pro-biotic.
Cite This Article:
Please cite this article in press Xing Jiangwa et al., Characterization And Pan-Genome Analysis Of Streptococcus Salivarius..,Indo Am. J. P. Sci, 2024; 11 (11).
Number of Downloads : 10
References:
1. Hakalehto E, Vilpponen-Salmela T, Kinnunen K, von Wright A. 2011. Lactic acid bacteria enriched from human gastric biopsies. ISRN Gastroenterol. 2011:109183. 10.5402/2011/109183.
2. Masaaki, Minami., Shunsuke, Akahori., Michio, Ohta. (2023). Amylase from Streptococcus pyogenes inhibits biofilm formation in Streptococcus salivarius. GSC Advanced Research and Reviews, doi: 10.30574/gscarr.2023.14.2.0050.
3. Burton JP, et al. 2006. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. Journal of Applied Microbiology, 100(4): 754-764.
4. Ferretti J, et al. 2016. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016.
5. Franklin, W., Yates., Christopher, Bruno. (2014). Streptococcus salivarius Meningitis as a Presenting Manifestation of a Rare Underlying Basicranial Defect. Infectious Diseases in Clinical Practice, doi: 10.1097/IPC.0000000000000135.
6. Nataliia, Valerievna, Davidovich., A, S, Galieva., N, G, Davydova., O, G, Malygina., N, N, Kukalevskaya., G, V, Simonova., T., A., Bazhukova. (2020). Spectrum and resistance determinants of oral streptococci clinical isolates.. Klinicheskaia laboratornaia diagnostika, doi: 10.18821/0869-2084-2020-65-10-632-637.
7. Fanny, Chaffanel., Florence, Charron-Bourgoin., Virginie, Libante., Nathalie, Leblond-Bourget., Sophie, Payot., Sophie, Payot. (2015). Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.. Applied and Environmental Microbiology, doi: 10.1128/AEM.00415-15.
8. Thais, Palma, Erika, N., Harth-Chu., Jodie, C., Scott., Rafael, Nobrega, Stipp., Heike, Boisvert., Mariana, F., Salomao., Jéssica, Dias, Theobaldo., Rosana, de, Fátima, Possobon, Leandro, Costa, do, Nascimento, Jonathan, W., McCafferty., Lina, L., Faller., Margaret, J., Duncan., Renata, O., Mattos-Graner. (2016). The oral cavities of healthy infants harbor high proportions of Streptococcus salivarius strains with phenotypic and genotypic resistance to multiple classes of antibiotics. Journal of Medical Microbiology, doi: 10.1099/JMM.0.000377.
9. Rodriguezr, L.M. and K.T. Konstantinidis. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes [J]. PeerJ Preprints, 2016 4:e1900v1.
10. Luis, M., Rodriguez-R., Roth, E., Conrad., Tomeu, Viver., Dorian, J., Feistel., B., Lindner., Fanus, Venter., Luis, H., Orellana., Rudolf, Amann., Ramon, Rosselló-Móra., Konstantinos, T., Konstantinidis. (2023). An ANI gap within bacterial species that advances the definitions of intra-species units. bioRxiv, doi: 10.1101/2022.06.27.497766.
11. Frederic Bertels, Olin K. Silander, Mikhail Pachkov. Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads [J]. Molecular biology and evolution, 2014. 31(5): 1077-1088.
12. Frederic Bertels, Olin K. Silander, Mikhail Pachkov. Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads [J]. Molecular biology and evolution, 2014. 31(5): 1077-1088.
13. Xinyu, Chen., Yadong, Zhang., Zhewen, Zhang., Yongbing, Zhao., Chen, Sun., Ming, Yang., Jinyue, Wang., Jinyue, Wang., Qian, Liu., Baohua, Zhang., Meili, Chen., Jun, Yu., Jiayan, Wu., Zhong, Jin., Jingfa, Xiao., Jingfa, Xiao. (2018). PGAweb: A Web Server for Bacterial Pan-Genome Analysis.. Frontiers in Microbiology, doi: 10.3389/FMICB.2018.01910
14. Kai, Blin., Simon, Shaw., Hannah, E., Augustijn., Zachary, L., Reitz., Friederike, Biermann., Mohammad, Alanjary., Artem, Fetter., Barbara, R., Terlouw., William, W., Metcalf., Eric, J., N., Helfrich., Gilles, P., van, Wezel., Marnix, H., Medema., Tilmann, Weber. (2023). antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures, and visualization. Nucleic Acids Research, doi: 10.1093/nar/gkad344.
15. Kai, Blin., Simon, Shaw., Alexander, M., Kloosterman., Zach, Charlop-Powers., Gilles, P., van, Wezel., Marnix, H., Medema., Marnix, H., Medema., Tilmann, Weber. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Research, doi: 10.1093/NAR/GKAB335
16. Mcarthur, A G, et al. The comprehensive antibiotic resistance database [J]. Antimicrobial Agents & Chemotherapy, 2013. 57(7):3348-3357.
17. Liu B, Zheng DD, Zhou SY, Chen LH, and Yang J, 2022. VFDB 2022: a general classification scheme for bacterial virulence factors.
18. Bo, L. I. U., H. U. Gui-ping, and T. A. N. G. Wei-qi. “Characteristic of average nucleotide identity (ANI) based on the whole genomes from Bacillus species in Bacillus-like genus.” 福建农业学报 28.9 (2013): 833-843.
19. KoMINE YU, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proceedings of the National Academy of Sciences. 1994 Sep 27;91(20):9223-7.