Volume : 11, Issue : 09, September – 2024
Title:
RECENT DEVELOPMENTS IN APTAMER TECHNOLOGY FOR THE TARGETED IDENTIFICATION OF SPECIFIC CANCER BIOMARKERS
Authors :
Vivek Jyoti Das*, Jiaul Ahmed Mazumder, Dipanwita Reang, Chufru Mog Chaudhury, Chumi Sarma, Anamika Majumdar
Abstract :
Abstract:
Aptamers are compact single-stranded oligonucleotides that can effectively bind to multiple molecules with high affinity and specificity, establishing themselves as a promising class of molecular recognition elements for the identification of specific cancer biomarkers. The distinctive characteristics of these molecules, such as their high specificity and affinity for target entities, stability in physiological environments and straightforward synthesis, render them excellent options for use in cancer diagnostics and treatment. The smaller dimensions of aptamers in contrast to antibodies, facilitate improved penetration into tissues and enable access to regions with dense cellular structures. Due to their limited immunogenic potential, aptamers are less inclined to trigger allergic reactions or adverse immune responses in individuals. Recent innovations in aptamer technology have emphasized the creation of innovative selection methods, including SELEX (Systematic Evolution of Ligands by Exponential Enrichment). This advancement has facilitated the discovery of aptamers that exhibit improved binding properties to a range of cancer biomarkers. These biomarkers include proteins, nucleic acids, and small molecules associated with tumor progression and metastasis. Furthermore, the association of aptamers with therapeutic agents or imaging probes has opened new pathways for targeted drug delivery and non-invasive imaging in oncology. This review presents recent innovations in aptamer design and their application in targeting specific cancer biomarkers, emphasizing their potential to improve early detection and treatment for cancer patients.
Keywords: Aptamers, cancer biomarkers, systematic evolution of ligands by exponential enrichment (SELEX), metastasis, oncology
Cite This Article:
Please cite this article in press Vivek Jyoti Das et al., Recent Developments In Aptamer Technology For The Targeted Identification Of Specific Cancer Biomarkers, Indo Am. J. P. Sci, 2024; 11 (09).
Number of Downloads : 10
References:
1. Shuaijian Ni, Zhenjian Zhuo, Yufei Pan, Yuanyuan Yu, Fangfei Li, Jin Liu, et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Applied Materials & Interfaces. 2020 Jun 30;13(8):9500–19.
2. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990; 63(3):601–608.
3. Tomasz Wandtke, Ewelina Wędrowska, Marcin Szczur, Grzegorz Przybylski, Marek Libura, Piotr Kopiński. Aptamers—diagnostic and therapeutic solution in SARS-CoV-2. International journal of molecular sciences. 2022 Jan 26;23(3):1412.
4. Carlos David Cruz-Hernández, Griselda Rodríguez-Martínez, Sergio A. Cortés-Ramírez, Miguel Morales-Pacheco, Marian Cruz-Burgos, Alberto Losada-García, et al. Aptamers as theragnostic tools in prostate cancer. Biomolecules. 2022 Jul 29;12(8):1056.
5. Natalia Komarova, Daria Barkova, Alexander Kuznetsov. Implementation of high-throughput sequencing (HTS) in aptamer selection technology. International journal of molecular sciences. 2020 Nov 20;21(22):8774.
6. Yang Liu1, Nijia Wang, Chiu-Wing Chan, Aiping Lu, Yuanyuan Yu, Ge Zhang, et al. The application of microfluidic technologies in aptamer selection. Frontiers in Cell and Developmental Biology. 2021 Sep 17; 9:730035.
7. Andrey A. Buglak, Alexey V. Samokhvalov, Anatoly V. Zherdev, Boris B. Dzantiev. Methods and applications of in silico aptamer design and modeling. International journal of molecular sciences. 2020 Nov 10;21(22):8420.
8. Xin Guo, Guan-Hua Chen. Capillary electrophoresis‐based methodology for screening of oligonucleotide aptamers. Biomedical Chromatography. 2021 Jul;35(7): e5109.
9. Adam M. Kabza, Nandini Kundu, Wenrui Zhong, Jonathan T. Sczepanski. Integration of chemically modified nucleotides with DNA strand displacement reactions for applications in living systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2022 Mar;14(2): e1743.
10. Mark L. Chiu, Dennis R. Goulet, Alexey Teplyakov, Gary L. Gilliland. Antibody structure and function: the basis for engineering therapeutics. Antibodies. 2019 Dec 3;8(4):55.
11. Charles A. Janeway, Paul Travers, Mark Walport and Mark Shlomchik. 2001.The interaction of the antibody molecule with specific antigen. [ONLINE] Available at: https://www.ncbi.nlm.nih.gov/books/NBK27160/ [Accessed 21 August 2024].
12. Varatharasa T, David G. G. Aptamers and the next generation of diagnostic reagents. PROTEOMICS–Clinical Applications. 2012 Dec;6(11-12):563-73.
13. Sanchita Mitra, Pushpa Chaudhary Tomar. Hybridoma technology; advancements, clinical significance, and future aspects. Journal of Genetic Engineering and Biotechnology. 2021 Dec; 19:1-2.
14. Zhe Liu, Jin-Hong Duan, Yong-Mei Song, Jie Ma, Feng-Dan Wang, Xin Lu, et al. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. Journal of translational medicine. 2012 Dec; 10:1-0.
15. Yanyan Han, Dandan Liu, Lianhong Li. PD-1/PD-L1 pathway: current researches in cancer. American journal of cancer research. 2020;10(3):727.
16. Carla Lucia Esposito, Diana Passaro, Immacolata Longobardo, Gerolama Condorelli, Pina Marotta, Andrea Affuso, et al. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PloS one. 2011 Sep 6;6(9): e24071.
17. Xiaozhou Fan, Yanli Guo, Luofu Wang, Xingyu Xiong, Lianhua Zhu, Kejing Fang. Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles. International journal of nanomedicine. 2016 Aug 12:3939-50.
18. Gang Zhou, Sarah Da Won Bae, Romario Nguyen, Xiaoqi Huo, Shuanglin Han, Zhiqiang Zhang. An aptamer-based drug delivery agent (CD133-apt-Dox) selectively and effectively kills liver cancer stem-like cells. Cancer Letters. 2021 Mar 31; 501:124-32.
19. Dhananjay S, Perumalsamy N, Mauro G, Jr Emmett T.C. Pegaptanib sodium for ocular vascular disease. Indian journal of ophthalmology. 2007 Nov 1;55(6):427-30.
20. Karen G. C, Joseph A. R, Ioannis K. R, Joan W. M, Evangelos S. G, Anthony P. A. Controlled delivery of the anti-VEGF aptamer EYE001 with poly (lactic-co-glycolic) acid microspheres. Investigative ophthalmology & visual science. 2003 Jan 1;44(1):290-9.
21. Alexander V.A, Neelam S.W. Anti-nucleolin aptamer AS1411: an advancing therapeutic. Frontiers in Molecular Biosciences. 2023 Sep 21; 10:1217769.
22. Julia H, Dirk Z, Christian M, Nathalie Y. R, William G. W, Michael J. K. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood, The Journal of the American Society of Hematology. 2014 Feb 13;123(7):1032-9.
23. Rajesh S, Niladri H, Aazam S, Rajkumar S, Devyani S, Surajit P, et al. MUC1 aptamer-tethered H40-TEPA-PEG nanoconjugates for targeted siRNA-delivery and gene silencing in breast cancer cells. Front. Bioeng. Biotechnol. 2024 Apr 18; 12:1383495.
24. Yu Jin L, Il Shin K, Soo-Ah P, Youndong K, Jeung E. L, Dong-Y. N. Periostin-binding DNA aptamer inhibits breast cancer growth and metastasis. Molecular Therapy. 2013 May 1;21(5):1004-13.
25. Ted C.C, John W. M. III, Laura A. L, Sarah F, Michael G. R, Andrew D. E. Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer research. 2006 Jun 15;66(12):5989-92.
26. Marit D. M, Kate M, Greg L. P, M. Asif A. S. Imatinib: a review of its use in chronic myeloid leukemia. Drugs. 2007 Feb; 67:299-320.